Bertram Kopf

Overview of Light Meson Spectroscopy: Results and Perspectives

17th International Workshop on Hadron Structure and Spectroscopy 2020 Trieste, November 16 – 18, 2020

Outline

- Introduction
- Results in the past
 - > scalar, pseudo-scalar and tensor resonances
- Recent results
 - > spin-exotic 1⁻⁺ hybrid candidate $\pi_1(1600)$
 - > coupled channel analysis with $\overline{p}p$ and $\pi\pi$ -scattering data
- Perspectives
 - > new data and experiments

Introduction

- Light mesons are bound states consisting of u-, d- and s-quarks
- Cover the non-perturbative QCD regime
- Description very challenging
 - Iattice QCD
 - > phenomenological models
- Observation and measurements of the resonance properties very challenging
 - many overlapping resonances with same quantum numbers
 - decays in different channels

energy dependence of $\alpha_{\rm s}$

Quark Model

- Quark model successful for the classification of mesons
- qq̄-mesons: I^G J^{PC} determined by the isospin, the orientation of the quark spins and the orbital angular momentum

▷
$$P = (-1)^{L+1}$$
 $C = (-1)^{L+S}$ $G = (-1)^{I+L+S}$

- ▷ possible: J^{PC} = 0⁻⁺, 0⁺⁺, 1⁺⁻, 1⁻⁻, 1⁺⁺, 2⁻⁺, 2⁺⁺, ...
- Forbidden: J^{PC} = 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, ...
- Provides a scheme to group $q\bar{q}$ -mesons in SU(3) nonets
- Many predicted states were found and classified
 - > example: nonets of ground state pseudo scalar and vector mesons

IWHSS 2020, Trieste, November 16-18, 2020

Bertram Kopf, Ruhr-Universität Bochum

Exotic States

- QCD predicts also exotic states which can be grouped in 3 categories
- Hybrids
 - > $q\bar{q}$ states with excited gluonic degrees of freedom
- Glueballs
 - > hadrons without any valence quark content
- Multiquark states
 - > tetraquark: tightly bound $(q\bar{q}) (q\bar{q})$ states
 - > molecule: loosely bound pair of mesons
- For exotic states also quantum numbers are possible which are forbidden for conventional $q\bar{q}$ states: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, ...$

Light Meson Spectrum

- Rich spectrum
- Many states need confirmation
- Candidates with exotic quantum numbers observed
- Challenges
 - many overlapping resonances
 with same quantum numbers
 - distinction between conventional qq mesons and exotics difficult
 - > proper access to resonance parameters

Access to the Inner Structure

- Characteristics of the production
 - γ induced processes include QED effects
 - > exotics with gluonic content should
 - → be mainly produced in gluon rich environments like radiative J/ψ decays, central production, or p̄p annihilation
 - → couple weakly to γ induced processes like $\gamma\gamma$ fusion

- Characteristics of the decay pattern
 - > glueballs: flavour blind decay with a rather narrow width
 - > molecules: decay into a meson pair close to threshold

Glueballs and Hybrids

- LQCD: lightest glueballs with exotic quantum numbers above 4 GeV/c²
- Glueballs in the light meson mass range only with non exotic quantum numbers J^{PC}= 0⁺⁺, 0⁻⁺, 2⁺⁺ predicted

 Lightest hybrid expected just below 2 GeV with exotic quantum numbers J^{PC}=1⁻⁺

- Lots of scalar resonances observed in the light meson mass region
- Too many to fit in the ground state nonet: σ , f₀(980), f₀(1370), f₀(1500), f₀(1710), ...

possible explanation

- $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ are mixtures between $q\bar{q}$ states and glueball
- $f_0(1500)$ and $f_0(1710)$ are candidates with large gluonic content
 - > strongly produced in gluon rich processes and suppressed in $\gamma\gamma$ fusion

IWHSS 2020, Trieste, November 16-18, 2020

0⁺ (0⁺⁺) States

- Various scenarios are existing for the mixing of (uū+dd), (ss) and (gg) states based on the observed production and decay strengths
- Challenge: proper description of the dynamics above the KK threshold due to several contributing decay channels

$$egin{pmatrix} |f_0(1370)
angle\ |f_0(1500)
angle\ |f_0(1710)
angle \end{pmatrix} = U \cdot egin{pmatrix} |u\overline{u} + d\overline{d}
angle\ |s\overline{s}
angle\ |gg
angle \end{pmatrix}$$

More accurate measurements and sophisticated analyses in particular for the region above the KK threshold are needed

0⁺ (0⁻⁺) States

- Many pseudo-scalar resonances observed
 γ, η', η(1295), η(1405), η(1475), η(1760), . . .
- $\eta(1405)$ is favored to be the 0⁻⁺ glueball
 - > strongly produced in radiative J/ ψ decays and also seen in $\overline{p}p$ annihilation
 - ν weak coupling to γγ
 - η(1295) and η(1475) radial excitations of ground state members η and η'
- But
 - > $\eta(1405)$ not seen in central production
 - LQCD predictions: Mg(0⁻⁺) > 2 GeV
 - > does the $\eta(1295)$ exist at all?
 - > are $\eta(1405)$ and $\eta(1475)$ two different states?

0⁺ (2⁺⁺) States

- 2 isoscalar nonets result from the quark model: ${}^{(2S+1)}L_J = {}^{3}P_2$ and ${}^{3}F_2$
- More than 10 conventional $q\bar{q}$ states should exist in the light meson sector
- Poor knowledge in the mass region above the $\bar{p}p$ threshold so far
- Lightest tensor glueball predicted between 2 2.4 GeV
- Hints in $\pi p \rightarrow \phi \phi n$ at BNL with unexpected large cross section for 3 tensor mesons between 2 2.4 GeV

IWHSS 2020, Trieste, November 16-18, 2020

Status: Light Meson Spectroscopy

- Over the last 30 years significant amount of data analyzed, but still many unresolved questions
- Lots of broad and overlapping resonances
- Mixtures between conventional $q\bar{q}$ and exotic states possible
- Complete and unambiguous knowledge of all qq multiplets is needed
- Many resonance properties obtained from single channel analyses with Breit-Wigner parametrization
- Multi channel analyses with sophisticated approaches (unitarity, analyticity) by combining data with different decay and production modes are needed

Dynamical Functions

- Breit-Wigner functions widely used
 - > good approximation for isolated resonances appearing in a single channel
 - resonance parameters depend on the production mechanism
- More sophisticated descriptions needed for
 - resonances decaying into multiple channels
 - several resonances appearing in the same channel
 - \succ resonances located at thresholds \rightarrow distortion of the line shape

Approaches with an adequate consideration of unitarity and analyticity needed (K-matrix, N/D-method, Two-potential decomposition)

JPAC Analysis of COMPASS Data

- Coupled channel analysis of the 1⁻⁺ and 2⁺⁺ wave in $\pi^- p \rightarrow \pi^- \eta^{(+)} p$
- 2 hybrid candidates
 - \succ at around 1.4 GeV only seen in $\pi\,\eta$
 - > at around 1.6 GeV seen in $\pi\,\eta$ ' but not in $\pi\,\eta$
- Enforcing analyticity and unitarity utilizing N/D method
- Mass shapes and phase shifts between 1⁻⁺ and 2⁺⁺ are considered
- Decay channels to $\rho \pi$, $b_1 \pi$ or $f_1 \pi$ not considered

IWHSS 2020, Trieste, November 16-18, 2020

JPAC Analysis of COMPASS Data

Only one 1⁻⁺ pole is needed to describe the peaks at 1.4 GeV in $\pi \eta$ and at 1.6 GeV in $\pi \eta$ '

IWHSS 2020, Trieste, November 16-18, 2020

PWA with pp Data from Crystal Barrel at LEAR

- Fixed target experiment at CERN
- In operation between 1989 and 1996
 - leading pp-experiment in the field of light meson spectroscopy
- $\overline{p}p$ annihilation at rest and in flight
 - > highest beam momentum 1.94 GeV/c

Eur. Phys. J. C (2020) 80:453

Coupled channel analysis of $\bar{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$ at 900 MeV/c and of $\pi \pi$ -scattering data

The Crystal Barrel Collaboration

M. Albrecht¹, C. Amsler^{4,5}, W. Dünnweber³, M. A. Faessler³, F. H. Heinsius¹, H. Koch¹, B. Kopf^{1,a}, U. Kurilla^{1,6}, C. A. Meyer², K. Peters^{1,6}, J. Pychy¹, X. Qin¹, M. Steinke¹, U. Wiedner¹

IWHSS 2020, Trieste, November 16-18, 2020

Motivation: $\overline{p}p \rightarrow K^+ K^- \pi^0$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$

Why $\overline{p}p \rightarrow K^+ K^- \pi^0$, $\pi^0 \eta^0 \eta$, $\pi^0 \eta \eta$?

- Many a_0 , a_2 , f_0 and f_2 resonances appear in two or all three channels
 - constraints due to common production amplitudes
 - > description of the dynamics via K-matrix (unitarity and analyticity)
- Exotic spin wave $\pi_1(1400) \rightarrow \pi \eta$ so far only seen in $\overline{p}p$ data at rest
 - > also visible in $\overline{p}p$ data in flight @ 900 MeV/c beam momentum?

Why scattering data?

- Processes only characterized by elasticity and phase motion
 → good and easy access to resonance properties
- Considered for I=0 S- and D-wave and I=1 P-wave
- Good constraints for f_0 , f_2 and ρ resonances

Some Fit Results

IWHSS 2020, Trieste, November 16-18, 2020

Extracted Resonance Properties

name <i>K</i> *(892) $\phi(1020)$	relevant data $\bar{p}p$ $\bar{p}p$	Breit-Wigner mass $[MeV/c^2]$ $892.2 \pm 0.5 \pm 1.7$ $1018.4 \pm 0.5 \pm 0.1$	Breit-Wigner width Γ [MeV] 54.4 \pm 0.9 \pm 1.7 4.2 (fixed)	More pro re	than 50 diff perties ext levant Rier	ferent reso racted on nann-she	onance the ets
name	relevant data	pole mass [MeV/ c^2] 1404 7 + 3 5 ^{+15.1}	pole width Γ [MeV] 628.3 + 27.1 + 35.8				
$ \begin{array}{c} f_0(500) \\ f_0(980)^{++} \\ f_0(980)^{+++} \\ f_0(1370) \end{array} $	scat scat scat scat	$1404.7 \pm 3.5_{-17.7}$ $857.0 \pm 5.7 \pm 366.4$ $977.8 \pm 0.6 \pm 1.6$ $992.8 \pm 0.8 \pm 1.0$ $1280.6 \pm 1.6 \pm 47.4$	$\begin{array}{c} 628.3 \pm 27.1 \\ -138.2 \\ 771.6 \pm 8.3 \pm 291.1 \\ 97.8 \pm 1.2 \pm 5.4 \\ 61.3 \pm 1.3 \pm 4.4 \\ 410.5 \pm 3.5 \pm 41.5 \\ \end{array}$	All obtained properties are within the ballpark of other measurements			
$f_0(1500) f_0(1710) f_2(1810) f_2(1950)$	$\bar{p}p$ + scat $\bar{p}p$ + scat scat scat	$1496.0 \pm 1.2 \substack{+4.4\\-26.4}$ $1803.5 \pm 3.5 \substack{+45.5\\-10.4}$ $1845.0 \pm 2.2 \substack{+1.6\\-7.2}$ $1978.2 \pm 1.8 \substack{+28.4\\-16.9}$	$\begin{array}{c} 80.8 \pm 0.6 \substack{+20.0 \\ -5.0} \\ 289.7 \pm 5.0 \substack{+32.6 \\ -19.3} \\ 260.9 \pm 3.9 \substack{+199.9 \\ -38.2} \\ 237.6 \pm 1.6 \substack{+41.6 \\ -15.5} \end{array}$				
name	relevant data	pole mass $[MeV/c^2]$	pole width Γ [MeV]	$\Gamma_{KK}/\Gamma_{\eta\pi^0} \ [\%]$	_		
$\begin{array}{c} a_0(980)^{}\\ a_0(980)^{-+}\\ a_0(1450)\\ a_2(1320)\\ a_2(1700) \end{array}$	<u></u> рр <u>рр</u> рр рр рр	$\begin{array}{c} 1002.4 \pm 1.4 \pm 6.6 \\ 1004.1 \pm 1.5 \pm 6.5 \\ 1302.1 \pm 1.1 \pm 3.9 \\ 1312.5 \pm 0.7 \pm 2.6 \\ 1638.9 \ \pm 2.3 \ \substack{+57.4 \\ -0.1 \end{array}$	$\begin{array}{c} 127.0 \pm 2.3 \pm 6.7 \\ 97.2 \pm 1.9 \pm 5.7 \\ 112.4 \pm 1.4 \pm 3.4 \\ 106.9 \pm 1.2 \pm 3.7 \\ 224.0 \pm 2.5 \begin{array}{c} ^{+1.8} \\ ^{-48.3} \end{array}$	$\begin{array}{c} 14.9 \pm 0.1 \pm 3.9 \\ 13.8 \pm 0.1 \pm 3.5 \\ 188.7 \pm 4.1 \pm 97.0 \\ 35.2 \pm 1.1 \pm 17.5 \\ 413.4 \pm 10.6 {}^{+490.9}_{-298.8} \end{array}$	_		
name	relevant data	pole mass $[MeV/c^2]$	pole width Γ [MeV]	$\Gamma_{\pi\pi}/\Gamma_{[\%]}$	$\Gamma_{\!K\!K}/\Gamma \ [\%]$	$\Gamma_{\eta\eta}/\Gamma_{[\%]}$	
$ \begin{array}{c} f_2(1270) \\ f_2'(1525) \\ \rho(770) \\ \rho(1700) \end{array} $	$\bar{p}p$ + scat $\bar{p}p$ + scat scat $\bar{p}p$ + scat	$\begin{array}{c} 1263.3 \pm 0.2 \pm 1.5 \\ 1495.0 \pm 1.1 \pm 8.1 \\ 766.8 \pm 0.2 \pm 0.2 \\ 1688.7 \pm 3.1 \begin{array}{c} ^{+141.1} \\ ^{-1.3} \end{array}$	$193.7 \pm 0.4 \pm 1.6 \\ 104.8 + 0.9 + 9.8 \\ 126.2 \pm 0.3 \pm 0.4 \\ 150.9 \pm 2.5 \ ^{+60.0}_{-10.6}$	$\begin{array}{c} 85.6 \pm 0.1 \pm 5.0 \\ 3.4 \pm 1.5 \pm 1.0 \\ 100.5 \pm 0.1 \pm 6.7 \\ 10.8 \pm 1.7 {}^{+16.2}_{-0.4} \end{array}$	$\begin{array}{c} 3.3 \pm 0.1 \pm 0.5 \\ 74.6 \pm 0.2 \pm 16.6 \\ 0.5 \pm 0.1 \pm 0.1 \\ 0.7 \pm 0.6 \substack{+4.1 \\ -0.2 \end{array}$	$\begin{array}{c} 0.4 \pm 0.1 \pm 0.2 \\ 5.9 \pm 0.3 \pm 2.6 \end{array}$	

1⁻⁺ Wave in $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$

- 1⁻⁺ wave seen in the decay $\pi^0\eta$
- Phase difference between the π_1 and a_2 wave from $T_{\pi\eta \to \pi\eta}$ in good agreement with COMPASS measurement
- Pole position of the π_1 : M = (1404.7 ± 3.5 (stat.) $^{+9.0}_{-17.3}$ (sys.)) MeV/ c^2

 $\Gamma = (628.3 \pm 27.1 \text{ (stat.)} ^{+35.8}_{-138.2} \text{ (sys.)}) \text{ MeV}$

Coupled Channel Analysis with pp and COMPASS Data

- Extension: simultaneous fit of $\pi\pi$ -scattering data, $\overline{p}p \rightarrow K^+K^-\pi^0$, $\pi^0\pi^0\eta$, $\pi^0\eta\eta$ and $\pi^-p \rightarrow \pi^-\eta^{(')}p$
- Good description with one pole scenario for the 1⁻⁺ wave
- Still under investigation

Perspectives

- GlueX
 - study of light mesons up to 3 GeV in photoproduction
 - > search for hybrid states
- BELLE II
 - high statistics yy data
- New J/ ψ data at BESIII
 - ~ 10 billion decays have been recorded
 - > new insight in particular for radiative decays
- LHCb
 - B(s) decays
- PANDA at FAIR
 - pp annihilations from 1.5 15 GeV/c
 - cover lack of data close to and above the pp threshold
- \bar{p} physics with COMPASS++ / AMBER
- K_L facility at Jefferson Lab

Summary

- Many new insights have been gained in the last decades
- Still many unresolved questions in the light meson region
- Many broad and overlapping resonances with the same quantum numbers
- Mixtures between conventional $q\bar{q}$ and exotic states possible
- Access to the inner structure by investigating the different production processes and decay modes
- Sophisticated analysis methods are needed for the proper extraction of resonance properties e.g.
 - JPAC analysis of the spin exotic 1⁻⁺ wave: peak at 1.4 GeV in πη and at 1.6 GeV in πη' can be described by one pole
 - > coupled channels analysis with $\overline{p}p$ annihilation and $\pi\pi$ scattering data
- New experiments and high statistics data important to shed more light on the still unresolved questions in the light meson region