

Chiral Perturbation Theory: Recent Experimental Results and Perspectives

Norbert Kaiser Stephan Paul TU Munich

COVID Video contribution

- π^0 lifetime
- Chiral anomaly
 - $\pi^- \gamma^* \rightarrow \pi^- \pi^0$
- Polarizability
 - $\pi\gamma^* \rightarrow \pi\gamma$
 - $K\gamma^* \rightarrow K\gamma$
- $\pi\pi$ scattering
 - K decays
 - $\pi^-\gamma^* \rightarrow \pi^-\pi^+\pi^-, \pi^-\pi^0\pi^0$
 - $\pi^-\pi^* \rightarrow \pi^-\pi$
- Kπ scattering
 - $K^-\gamma^* \rightarrow K^-\pi^+\pi^-, K^-\pi^0\pi^0$
 - $K^-\pi^* \rightarrow K^-\pi$
- $\eta \rightarrow \pi \pi$, $\eta \rightarrow \pi \pi \pi$ (not covered here)
- Chiral symmetry restauration parity doubling of mesons

Some highlights of ChPT

- Pions π^{±0}: Goldstone bosons of spontaneous chiral symmetry breaking in QCD, SU(2)_L × SU(2)_R → SU(2)_V
- Their low-energy dynamics: systematically (and accurately) calculable in Chiral Perturbation Theory (= loop-expansion with effective Lagrangian)
- Leading-order pion-pion scattering amplitude in ChPT: involves as scale parameter the pion decay constant $f_{\pi} = 92.2 \text{ MeV}$

- 2-loop prediction for $I = 0 \pi \pi$ -scattering length: $a_0 m_{\pi} = 0.220 \pm 0.005$ confirmed by E865@BNL: $K^+ \to \pi^+ \pi^- e^+ \nu_e (\pi^+ \pi^- \text{ mass distribution})$
- Cusp effect in $2\pi^0$ mass spectrum of $K^+ \to \pi^+ \pi^0 \pi^0$ at $\pi^+ \pi^-$ threshold: $(a_0 - a_2)m_\pi = 0.257 \pm 0.006 \ (0.265 \pm 0.005)_{ChPT}$
- Conclusion: quark condensate $\langle 0|\bar{q}q|0\rangle$ is large, linear term dominates quark mass expansion of m_{π}^2 : $m_{\pi}^2 t_{\pi}^2 = -\langle 0|\bar{q}q|0\rangle m_q + O(m_q^2 \ln m_q)$

ト イポト イヨト イヨト 二日

Beyond perturbation theory

• Moderately attractive isospin-0 S-wave $\pi\pi$ -interaction can produce upon iteration to all orders (or unitarization) a complex resonance-pole

$$\begin{split} T_0^0(s) &= A_0^0(s) + A_0^0(s)G(s)A_0^0(s) + A_0^0(s)G(s)A_0^0(s)G(s)A_0^0(s) + \dots = \frac{A_0^0(s)}{1 - G(s)A_0^0(s)}, \\ A_0^0(s) &= \frac{2s - m_\pi^2}{f_\pi^2}, \qquad G(s) = \frac{1}{16\pi^2} \left\{ \frac{1}{2} - \sqrt{1 - \frac{4m_\pi^2}{s}} \ln \frac{\sqrt{-s} + \sqrt{4m_\pi^2 - s}}{2m_\pi} - \ln \frac{m_\pi}{\lambda} \right\} \end{split}$$

- Inverse amplitude method in chiral limit $m_{\pi} = 0$ gives
 - $T_0^0 = \frac{2s}{f_\pi^2} \left[1 i \frac{s}{16\pi f_\pi^2} \right]^{-1}$ has complex pole at $\sqrt{s} = (1-i)$ 462 MeV
- Scrutinized by dispersion relation analysis and Roy-Steiner equations [I. Caprini, G. Colangelo, J. Gasser, H. Leutwyler, B. Moussallam]

 σ -pole at $\sqrt{s} = m_{\sigma} - i\Gamma_{\sigma}/2 = [(450 \pm 20) - i(280 \pm 10)] \text{ MeV}$

• More to physics of $\pi\pi$ S-wave than occurrence of pole far from real axis

- Further dynamically generated poles from mesonic final-state interactions:
- κ (700) in πK S-wave with I = 1/2
- $f_0(980)$ in $\pi\pi$ - $K\bar{K}$ coupled channels
- $a_0(980)$ in $\pi\eta$ - $K\bar{K}$ coupled channels
- $\Lambda(1405)$ in $\pi\Sigma \bar{K}N$ coupled channels

COMPASS: Measurement of low-energy pion-photon reactions

 Scattering high-energy pions in nuclear Coulomb field (charge Z) allows to extract cross sections for π⁻γ reactions (equivalent-photon method)

$$rac{d\sigma}{ds\,dQ^2} = rac{Z^2lpha}{\pi(s-m_\pi^2)}rac{Q^2-Q_{min}^2}{Q^4}\,\sigma_{\pi^-\gamma}(s)\,,\qquad Q_{min} = rac{s-m_\pi^2}{2E_{beam}}$$

- $s = (\pi^- \gamma \text{ invariant mass})^2$, $Q \rightarrow 0$ momentum transfer by virtual photon
- Isolate Coulomb peak from strong interaction background
- Different final-states $\pi^-\gamma$, $\pi^-\pi^0$, $\pi^-\pi^0\pi^0$, $\pi^+\pi^-\pi^$ allow to test different aspects of chiral dynamics (low-energy QCD)
- Polarizabilities, chiral anomaly, $\pi\pi$ -scattering in el-magn. environment

くロト 不得 トイヨト イヨト 二日

Pion electromagnetic polarizabilities

Two-loop prediction of ChPT: ¹/_{ℓ6} - ¹/_{ℓ5} = 3.0 ± 0.3 from radiative pion decay π⁺ → e⁺ν_eγ, PIBETA@PSI: axial-to-vector ratio F_A/F_V = 0.44

$$\begin{aligned} \alpha_{\pi} - \beta_{\pi} &= \frac{\alpha(\bar{\ell}_{6} - \bar{\ell}_{5})}{24\pi^{2} f_{\pi}^{2} m_{\pi}} + \frac{\alpha m_{\pi}}{(4\pi f_{\pi})^{4}} \Big\{ c^{r} + \frac{8}{3} \Big(\bar{\ell}_{2} - \bar{\ell}_{1} + \bar{\ell}_{5} - \bar{\ell}_{6} + \frac{65}{12} \Big) \ln \frac{m_{\pi}}{m_{\rho}} \\ &+ \frac{4}{9} \big(\bar{\ell}_{1} + \bar{\ell}_{2} \big) - \frac{\bar{\ell}_{3}}{3} + \frac{4\bar{\ell}_{4}}{3} \big(\bar{\ell}_{6} - \bar{\ell}_{5} \big) - \frac{187}{81} + \Big(\frac{53\pi^{2}}{48} - \frac{41}{324} \Big) \Big\} \\ \alpha_{\pi} - \beta_{\pi} &= (5.7 \pm 1.0) \cdot 10^{-4} \, \text{fm}^{3}, \qquad \alpha_{\pi} + \beta_{\pi} = 0.16 \cdot 10^{-4} \, \text{fm}^{3} \end{aligned}$$

• COMPASS result: $\alpha_{\pi} - \beta_{\pi} = (4.0 \pm 1.8) \cdot 10^{-4} \text{ fm}^3$ [PRL 114, 062002 ('15)]

$$x_{\gamma} = E_{\gamma}/E_{\pi}$$
 in lab, $\cos heta_{
m cm} = 1 - 2x_{\gamma}s/(s - m_{\pi}^2)$

Analysis of data includes:

- chiral pion-loop corrections $A(s, t) \sim \ln^2(.t.)$
- radiative corrections [NPA 812, 186 ('08)]
- isospin-breaking correction $\sim (m_{\pi}^2 m_{\pi^0}^2) \ln^2(.t.)$

• previous results from Mainz and Serpukhov: $\alpha_{\pi} - \beta_{\pi} = (12 - 16) \cdot 10^{-4} \text{ fm}^3$

< 🗇 > < 🖻 > < 🖻 >

Extracting the chiral anomaly

π⁰ → 2γ and γ → 3π couplings determined by chiral anomaly of QCD
Amplitude and cross section for π⁻(p₁) + γ(k, ε) → π⁻(p₂) + π⁰(p₀):

$$\begin{split} T_{\gamma 3\pi} &= \frac{e}{4\pi^2 f_\pi^3} \epsilon_{\mu\nu\kappa\lambda} \epsilon^\mu p_1^\nu p_2^\kappa p_0^\lambda \, M(s,t) \,, \qquad F_{3\pi} = 9.8 \, \mathrm{GeV^{-3}} \\ \sigma_{\mathrm{tot}}(s) &= \frac{\alpha (s - m_\pi^2) (s - 4m_\pi^2)^{3/2}}{(4f_\pi)^6 \pi^4 \sqrt{s}} \int_{-1}^1 dz \, (1 - z^2) \, |M(s,t)|^2 \end{split}$$

• $\rho(770)$ -resonance must be included:

$$M(s,t)^{(\rho)} = 1 + 0.46 \left\{ \frac{s}{m_{\rho}^2 - s - i\sqrt{s}\Gamma_{\rho}(s)} + \frac{t}{m_{\rho}^2 - t} + \frac{u}{m_{\rho}^2 - u} \right\}$$

Extracting the chiral anomaly

• Dispersive representation of $\pi\gamma \rightarrow \pi\pi$ with p-wave phase shifts as input [M. Hoferichter, B. Kubis, D. Sakkas, PRD 86, 116009 ('12)]

$$\begin{aligned} &\frac{e}{4\pi^2 t_\pi^3} M(s,t) = F(s) + F(t) + F(u) \,, \qquad u = 3m_\pi^2 - s - t \,, \\ &F(s) = a + b \, s + \frac{s^2}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\mathrm{Im}F(s')}{s'^2(s'-s)} \,, \quad \mathrm{Im}F(s) = [F(s) + \hat{F}(s)] \sin \delta_1^1(s) e^{-i\delta_1^1(s)} \end{aligned}$$

• Relevant subtraction constant $C = 3(a + b m_{\pi}^2)$ is fitted to data and matched via the chiral representation to $F_{3\pi}$

Tree level cross sections for $\pi^-\gamma \rightarrow 3\pi$

- Coulomb gauge $\epsilon \cdot p_1 = \epsilon \cdot k = 0$, photon does not couple to incoming π^-
- No γ4π vertex at leading order

• Example: total cross section for $\pi^-(p_1) + \gamma(k, \epsilon) \rightarrow \pi^- \pi^0 \pi^0$

$$\sigma_{tot}(s) = \frac{\alpha}{16\pi^2(s-m_\pi^2)^3} \int_{2m_\pi}^{\sqrt{s}-m_\pi} d\mu \sqrt{\mu^2 - 4m_\pi^2} \left[\frac{\mu^2 - m_\pi^2}{f_\pi^2}\right]^2 \\ \times \left\{ (s+m_\pi^2 - \mu^2) \ln \frac{s+m_\pi^2 - \mu^2 + \lambda^{1/2}(s,\mu^2,m_\pi^2)}{2m_\pi\sqrt{s}} - \lambda^{1/2}(s,\mu^2,m_\pi^2) \right\}$$

• $(\mu^2 - m_{\pi}^2)/f_{\pi}^2$ is LO chiral $\pi\pi$ -interaction, rest from 3-body phase space • How large are next-to-leading order corrections from chiral loops + cts?

Charged pion-pair production

• $\sigma_{tot}(s)$ for $\sqrt{s} < 6m_{\pi}$ almost unchanged in comparison to tree approx.

• Suggestive explanation: $\pi^-\pi^- \rightarrow \pi^-\pi^-$ final state interaction $(1 - 0.02)^2$

$$a_{2} = -\frac{m_{\pi}}{16\pi f_{\pi}^{2}} \left[1 - \frac{m_{\pi}^{2}}{12\pi^{2}f_{\pi}^{2}} \left(\bar{\ell}_{1} + 2\bar{\ell}_{2} - \frac{3\bar{\ell}_{3}}{8} - \frac{3\bar{\ell}_{4}}{2} + \frac{3}{8} \right) \right]$$

- Analysis of COMPASS data for $\sqrt{s} \le 5m_{\pi}$ agrees with ChPT prediction First measurement of chiral dynamics in $\pi^{-}\gamma \to \overline{\pi^{-}\pi^{-}\pi^{+}}$, PRL108, 192001 ('12)
- Agreement on level of full 5-dimensional phase space distribution
- For $\pi^- \gamma \to \pi^- \pi^0 \pi^0$ chiral corrections are substantially larger $\sim (1+0.2)^2$

 $\pi^-\gamma^* \rightarrow \pi^-\pi^0$

 $\pi^0 \rightarrow \gamma \gamma$ and $\gamma \rightarrow 3\pi \ (\pi^- \gamma \rightarrow \pi^- \pi^0)$ determined by chiral anomaly of QCD

 $\pi^-\gamma^* \rightarrow \pi^-\pi^0$

- Use (quasireal) photons as target
- Scattering off Coulomb field in heavy nucleus \rightarrow Primakoff cross-section: $\alpha Z^2 \Rightarrow \text{large } Z$
- Veryhigh Z (e.g. Pb): large corrections from 2γ processes and from screening, conversions
 Optimum choice: medium heavy Ni target

Artistic depiction of $\pi^- + Ni \rightarrow \pi^- + \gamma + Ni$ via Primakoff process

- 190 GeV negative hadron beam: 96.8% π^- , 2.4% K^- , 0.8% p^-
- beam particle identification by Cherenkov detectors
- 4 mm Ni target disk ($\approx 25\% X_0$)
- Measure scattered π^- and produced photons (number depends on final state)
- Select exclusive events at lowest momentum transfers
- Small scattering angles require high resolution
 - spatial resolution of tracking $\approx 10 \ \mu m$
 - angular resolution of ECAL \approx 30 μ rad

COMPASS

Theory: use χ PT and dispersion theory to accommodate for FSI

M. Hoferichter, B. Kubis, D. Sakkas, PRD 86, 116009 ('12)

- allows to address higher masses
- extract $F_{3\pi}$ and radiative width of ρ meson (only 2 free parameters)
- possibly access radiative width of excited $\,\rho$ mesons
- Experimental issues: subtraction of diffractive production, luminosity

- Measure absolute cross sections
 - Target thickness (geometry)
 - Beam flux including PID
 - Known ratio of π/K in beam (prervious measurements at CERN)
 - Count kaons
 - $K^- \to \pi^- \pi^0$ (20,7%) , $K^- \to \pi^- \pi^+ \pi^-$ (5.6%)
 - Consider backgrounds for these decays
 - $K^- \rightarrow \pi^0 e^- \overline{v}_e$ (5%) identification of electrons not unambiguous owing to Bremsstrahlung before detection
 - $K^- \rightarrow \pi^0 \mu^- \overline{\nu}_\mu$ (3.4%)
 - In principle: all decays can be used X-check of normalization
 - In fact: requires excellent understanding of efficiencies and cross talk
- Understand underlying strong interaction background

• Perform angular analysis for quantum numbers and yield (radiative width)

- Use Primakoff reaction to produce π^0
- Coherent photoproduction
- Measure $\gamma\gamma$ width through differential production cross section

• Use real photons as beam

 $\gamma\gamma^* \to \pi^0 \to \gamma\gamma$

\sim Differential cross section for π^0 production

 $\Gamma(\pi^0 \to \gamma \gamma) = 7.798 \pm 0.056(stat) \pm 0.109(sys) \ eV$

• World average: $\Gamma(\pi^0 \to \gamma \gamma) = 7.802 \pm 0.052(stat) \pm 0.105(sys) \ eV$

- Polarizability
 - $K\gamma^* \rightarrow K\gamma$
- Kπ scattering
 - $K^-\gamma^* \rightarrow K^-\pi^+\pi^-, K^-\pi^0\pi^0$
 - $K^-\pi^* \rightarrow K^-\pi$

Goals:

- 1. Determine $K\pi$ scattering length
- 2. Access $K\pi$ resonances and their radiative width
- 3. Chiral anomaly for kaons SU(3) symmetry breaking (dispersive analysis prepared)
- 4. Vector formfactor for kaon $K^- \to \ell v_{\ell} \gamma$ (analogon to $\pi^0 \to \gamma \gamma$)
- 5. Corrections larger than for $\pi\pi$ ("large" strange quark mass)

$K\pi$ S-wave

- perform scattering experiment: use "pion cloud" as virtual π target
 - π exchange dominates at pion pole (in scattering experiments: t < 0)
 - extrapolate to pion pole
 - enhance π exchange through Δ production (recoil particle detection)
 - examples: SLAC experiments, K_L beam at JLAB (planned)
 - theoretically complex
- extract $K\pi$ S-wave from decays (Watson theorem)
 - weak: $D \to K\pi\pi$ $\tau \to K\pi\nu_{\tau}$
 - strong: $K^* \to K\pi\pi$ $J/\psi \to K^*(892)K\pi$

Model Free Analysis of Hadronic Decays

Existing analyses suffer from unrecognized ambiguities (zero modes)

• $\tau \to K \pi v_{\tau}$ diffult to perform PWA (missing v_{τ}) - new technique developed analyze: $\tau^+ \tau^- \to K \pi v_{\tau} + \pi \pi \pi$

- Analyse $K\pi$ subsystem in $K\pi\pi$ final states
- Preliminary: $K\pi$ P-Wave
- To come: $K\pi$ S-Wave

Freed of ambiguities !!

Kπ S-Wave :from threshold intoresonance region

Chiral Symmetry Restauration (parity doubling)

Nucleon mass: 1% from quark mass (Higgs mechanism) \rightarrow 99% from the strong interaction (QCD)

Spontaneously broken: chiral symmetry

 Hadrons with different parity do not have same mass Unique test of fundamental QCD property:

- Change order parameter \rightarrow change temperature
- Symmetry restoration at high temperatures
 - Measure hadron properties (spectral functions)

- Low energy meson dynamics described by χPT
- Experiments address key observables (also sensitive to quark masses)
- Precision experiments allow to determine low energy constants of effective theory → universal description of QCD at low energies
- Extension into strangeness sector ongoing (see AMBER proposal)
- PWA important tool: extract S-wave scattering and single out Primakoff processes from high backgrounds
- Important test: Parity doubling in hot medium with restored chiral symmetry

- LASS data and projected JLAB data
- Measure t-dependeence and extrapolate to $t = m_{\pi}^2$

