Results of axion searches at 34 µeV with RADES haloscope and prospects for searches in BabyIaxo

Sergio Arguedas Cuendis, on behalf of the RADES group and IAXO

16th Patras Workshop on Axions, WIMPs and WISPs

18/06/2021
The RADES group uses the haloscope technique to search for axions at frequencies between 8 and 9 GHz.

A figure of merit for our experiment is given by:

$$F \sim g_{a\gamma}^2 m_a^2 B^4 V^2 T_{\text{sys}}^{-2} G^4 Q$$

To resonate at these frequencies without decreasing in volume RADES employs rectangular cavities joined by irises.

Figure 1: Scheme of a dark matter haloscope experiment [1].
RADES inductive irises prototype

- Consists of 5 sub-cavity structures joined by inductive irises.
- One can choose the working frequency by changing the dimension of the unit cell.
- Afterwards, the dimensions are optimized using simulations to achieve the best geometric factor.

Figure 2: RADES first prototype [2].
Inductive irises prototype

Figure 3: Electric field configuration of the 5 modes [2].

Figure 4: Transmission parameter: measurement (green) and theoretical model (gray). Red is axion coupling for the 5 modes [2].
RADES setup at CAST

Figure 5: CAST magnet

Figure 6: RADES setup at CAST [2].
Approximately 103 hours of data were recorded in 2018.

The characterization of the setup yielded the following values:

- $\beta = 0.50$.
- $Q = 11009$.
- $T = 7.8$ K
- $\Delta \nu = 4577$ Hz
- $B = 8.8$ T
- $G = 0.65$
- $V = 0.03$

Figure 7: Amplitude of a fit for an axion signal.
First CAST-RADES axion search results

Figure 8: RADES exclusion limit. https://arxiv.org/abs/2104.13798
Cavity developments

- To grow in volume more sub-cavities were added to manufacture a new ~ 1 m long cavity.

- For the BabyIAXO magnet, the height of the cavity can also be increased without affecting the resonance frequency.
Longer and taller cavities

Figure 9: 1 meter long cavity prototype [3].

Figure 10: Tall cavity prototype. Photo made by J.M. García
Figure 11: Preliminary RADES prospects for the long cavity at CAST (red) and the tall cavity at BabyIAXO (green) assuming 3 months of data.
RADES is looking for a dark matter candidate called axions using RF cavities resonating at frequencies between 8 and 9 GHz.

Data acquired with a 5-cavity pathfinding prototype in the CAST magnet provided first results at this frequency.

The volume can be increased by adding more sub-cavities or increasing the height of the short prototype.

RADES is also doing R&D toward tuning as well as using superconductive cavities.
[1] Frank T. Avignone III.
Homing in on Axions?

Axion Searches with Microwave Filters: the RADES project.
JCAP, 05:040, 2018.

Scalable haloscopes for axion dark matter detection in the 30µeV range with RADES.