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• The U(1)  must have a mixed U(1)-SU(3)c  anomaly:   Σq(XQ  -  Xq) ≠ 0

• Redefining the quark fields in the real mass basis    Q̄L va qR:       
       𝛩GG̃    ->   (a(x)/va + 𝛩) GG̃    ->    (a(x)/va) GG̃  

•  Non-pert. (instanton related) QCD effects generate a potential
  VQCD(a) = -(mπ fπ)2 cos(a/va)  that drives   <a/va> -> 0 at the minimum
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• Quality:  Effective PQ  opts.:   PQ vacuum eng. density < 10-10    VQCD(a)                                 
a  For  fa ~ 1010 GeV and effective scale MP , this implies  Eff. Opt. Dim. ≳ 10             
[  [Barr & Seckel ’92, Kamionkowski & March-Russel ’92, Holman et al. ’92, Ghigna et al. ’92]
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A sample of proposed solutions
U(1)PQ should arise automatically as a consequence of first principles. 
SSB requires VEVs ⇛ Lorentz singlets. Rely on local gauge symmetries 

• Non-Abelian SU(N)L x SU(N)R,  a(x) ∈ Yn×n “Orbital mode”  Y = U Ŷ Vt eia/va  
a 
  N > 4,  Lren   has an automatic rephasing symm.  V= V(YYt)       Y -> eiξ Y.    
  1st  PQ   opt.  Λ4-N  det Y    dim = N.      This requires  again   N ≥  10     

                                                                                            (Fong, EN ’14 [in SU(3)xSU(3)], Di Luzio, Ubaldi, EN ’17)      
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•Take a local SU(m)xSU(n) (m > n) and a scalar multiplet Yαi ∼ (m,n)̄   
  Gauge invariants are constructed with Kronecker δ and Levi-Civita ε 
a 

 δ-ιnvariants involve  YtY:       
 They are obviously all Hermitian   ⇛   accidental U(1):   Y -> eiξ Y
a

 ε-ιnvariants (non-Hermitian): there is none   εαβ…σ  Yαi Yβj …Yσr = 0. 

 Some SU(n) index (i,j,…,r) must coincide:  ε opts. vanish symmetrically 
   
Already for SU(3)xSU(2), V(Y) enjoys  automatically  an exact  global U(1)  

Note: for a Ynxn square matrix   εαβ…σ  εij…r Yαi Yβj …Yσr 摆 det Y  ≠  0  
Such automatic exact U(1) symmetries are peculiar of local `rectangular’ symmetries
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However, it can be shown that if  <Iε > ≠ 0, then  <Iδ> = 0 (and viceversa) 

  On the vacuum either one,   U(1)ε    or  U(1)δ    remain preserved 
  

Operators for which <O>  =  0 do not break the symmetries of the minimum, 
 the vacuum can enjoy a larger symmetry than the Lagrangian.    

Scalar bosons associated with these symmetries remain massless [Georgi & Pais ’75] 

The axion can remain protected even if V(Y,Z) breaks U(1)PQ



The “PQ  quality - flavour” connection



The “PQ  quality - flavour” connection

Can symmetries of this type be promoted to realistic PQ 
symmetries ? Can we learn something beyond `axion issues’ ?



The “PQ  quality - flavour” connection

Can symmetries of this type be promoted to realistic PQ 
symmetries ? Can we learn something beyond `axion issues’ ?

Origin & quality of accdt. symmt. <= non-Abelian `rectangular’     
                                                        gauge group GF acting on  
                                                   some set of scalar multiplets. 



The “PQ  quality - flavour” connection

Can symmetries of this type be promoted to realistic PQ 
symmetries ? Can we learn something beyond `axion issues’ ?

Origin & quality of accdt. symmt. <= non-Abelian `rectangular’     
                                                        gauge group GF acting on  
                                                   some set of scalar multiplets. 

Promoting U(1) to a PQ symmt. requires a mixed QCD anomaly. 
         =>  Quarks must transform under the accidt. U(1) symmt.  
         =>  Hence they must couple to the scalar multiplets 
         =>  Hence they must also transform under GF



The “PQ  quality - flavour” connection

Can symmetries of this type be promoted to realistic PQ 
symmetries ? Can we learn something beyond `axion issues’ ?

Origin & quality of accdt. symmt. <= non-Abelian `rectangular’     
                                                        gauge group GF acting on  
                                                   some set of scalar multiplets. 

Promoting U(1) to a PQ symmt. requires a mixed QCD anomaly. 
         =>  Quarks must transform under the accidt. U(1) symmt.  
         =>  Hence they must couple to the scalar multiplets 
         =>  Hence they must also transform under GF

The non-Abelian local GF  thus is a flavour symmetry !
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  The axion:    from   𝛩QCD -> 0    to    CDM   to …   SM  flavour  puzzle ??

The guiding principle is that a PQ symmetry of the required high 
quality must arise automatically from GF and the field content.

Any non-Abelian gauge symmt. generating a U(1)PQ  IS a flavour symmetry !

General features of GF  symmetries suited for U(1)PQ protection: 
•   Not all the quarks transform in the same way under GF  
•   Some Yukawa quarks originate from different operators 
•   Mass hierarchies seem to arise rather naturally

We are currently studying flavour groups that we would  
never have considered, had it not been for the axion !


