Axion quality from gauge flavour symmetries

Based in part on arXiv:2102.05055 (L. Darmé, EN) and on work in progress (Grilli Di Cortona, L. Darmé, C. Smarra)

Enrico Nardi

PATRAS 2021

[Peccei, Quinn (1977), Weinberg (1978), Wilczek (1978)]

• A scalar potential invariant under a global U(1): $\Phi \rightarrow e^{i\xi} \Phi$, $\delta V(\Phi) = 0$

[Peccei, Quinn (1977), Weinberg (1978), Wilczek (1978)]

• A scalar potential invariant under a global U(1): $\Phi \rightarrow e^{i\xi} \Phi$, $\delta V(\Phi) = 0$

•U(1) SSB: $\langle \Phi \rangle \sim v_a e^{ia(x)/v_a}$. a(x): $V(a) = 0 \rightarrow shift symmt$. $a \rightarrow a + \xi v_a$

- A scalar potential invariant under a global U(1): $\Phi \rightarrow e^{i\xi} \Phi$, $\delta V(\Phi) = 0$
- •U(1) SSB: $\langle \Phi \rangle \sim v_a e^{ia(x)/v_a}$. a(x): $V(a) = 0 \rightarrow shift symmt$. $a \rightarrow a + \xi v_a$
- •Couplings between the scalars and some quarks $\bar{Q}_{L} \Phi q_{R} \rightarrow \bar{Q}_{L} v_{a} q_{R} e^{ia(x)/v_{a}}$ U(1) is then enforced by <u>identifying</u> chiral PQ charges $X(Q_{L}) - X(q_{R}) = X(\Phi)$

- A scalar potential invariant under a global U(1): $\Phi \rightarrow e^{i\xi} \Phi$, $\delta V(\Phi) = 0$
- •U(1) SSB: $\langle \Phi \rangle \sim v_a e^{ia(x)/v_a}$. a(x): $V(a) = 0 \rightarrow shift symmt$. $a \rightarrow a + \xi v_a$
- •Couplings between the scalars and some quarks $\bar{Q}_{L} \Phi q_{R} \rightarrow \bar{Q}_{L} v_{a} q_{R} e^{ia(x)/v_{a}}$ U(1) is then enforced by <u>identifying</u> chiral PQ charges $X(Q_{L}) - X(q_{R}) = X(\Phi)$
- The U(1) must have a mixed U(1)-SU(3)_c anomaly: $\Sigma_q(X_Q X_q) \neq 0$

- A scalar potential invariant under a global U(1): $\Phi \rightarrow e^{i\xi} \Phi$, $\delta V(\Phi) = 0$
- •U(1) SSB: $\langle \Phi \rangle \sim v_a e^{ia(x)/v_a}$. a(x): $V(a) = 0 \rightarrow shift symmt$. $a \rightarrow a + \xi v_a$
- •Couplings between the scalars and some quarks $\overline{Q}_{L} \Phi q_{R} \rightarrow \overline{Q}_{L} v_{a} q_{R} e^{ia(x)/v_{a}}$ U(1) is then enforced by <u>identifying</u> chiral PQ charges $X(Q_{L}) - X(q_{R}) = X(\Phi)$
- The U(1) must have a mixed U(1)-SU(3)_c anomaly: $\Sigma_q(X_Q X_q) \neq 0$
- Redefining the quark fields in the real mass basis $\bar{Q}_L v_a q_R$: $\Theta G \tilde{G} \rightarrow (a(x)/v_a + \Theta) G \tilde{G} \rightarrow (a(x)/v_a) G \tilde{G}$

- A scalar potential invariant under a global U(1): $\Phi \rightarrow e^{i\xi} \Phi$, $\delta V(\Phi) = 0$
- •U(1) SSB: $\langle \Phi \rangle \sim v_a e^{ia(x)/v_a}$. a(x): $V(a) = 0 \rightarrow shift symmt$. $a \rightarrow a + \xi v_a$
- •Couplings between the scalars and some quarks $\bar{Q}_{L} \Phi q_{R} \rightarrow \bar{Q}_{L} v_{a} q_{R} e^{ia(x)/v_{a}}$ U(1) is then enforced by <u>identifying</u> chiral PQ charges $X(Q_{L}) - X(q_{R}) = X(\Phi)$
- The U(1) must have a mixed U(1)-SU(3)_c anomaly: $\Sigma_q(X_Q X_q) \neq 0$
- Redefining the quark fields in the real mass basis $\bar{Q}_L v_a q_R$: $\Theta G \tilde{G} \rightarrow (a(x)/v_a + \Theta) G \tilde{G} \rightarrow (a(x)/v_a) G \tilde{G}$
- Non-pert. (instanton related) QCD effects generate a potential $V_{QCD}(a) = -(m_{\pi} f_{\pi})^2 \cos(a/v_a)$ that drives $\langle a/v_a \rangle \rightarrow 0$ at the minimum

But where does the U(1) symmetry come from? The PQ "origin" and "quality" problems ...

But where does the U(1) symmetry come from? The PQ "<u>origin</u>" and "<u>quality</u>" problems ...

• <u>Origin</u>: $U(1)_{PQ}$ is <u>anomalous</u>: is not a symmetry of the theory. The generating functional $Z \sim \int [DA_{\mu}D\Phi] D\Psi D\overline{\Psi} \exp(iS)$

is <u>not invariant</u> under a PQ transformation. $U(1)_{PQ}$ cannot be "imposed"

• In benchmark axion models, Φ is a complex <u>scalar</u>, and a <u>gauge singlet</u>. Renormalizable terms $\mu^{3}\Phi$, $\mu^{2}\Phi^{2}$, $\mu\Phi^{3}$, $\lambda\Phi^{4}$ do not break gauge or Lorentz and cannot be forbidden. However, <u>they would destroy U(1)_{PQ} and the axion solution !</u>

But where does the U(1) symmetry come from ? The PQ "<u>origin</u>" and "<u>quality</u>" problems ...

• <u>Origin</u>: $U(1)_{PQ}$ is <u>anomalous</u>: is not a symmetry of the theory. The generating functional $Z \sim \int [DA_{\mu}D\Phi] D\Psi D\Psi \exp(iS)$

is <u>not invariant</u> under a PQ transformation. $U(1)_{PQ}$ cannot be "imposed"

- In benchmark axion models, Φ is a complex <u>scalar</u>, and a <u>gauge singlet</u>. Renormalizable terms $\mu^{3}\Phi$, $\mu^{2}\Phi^{2}$, $\mu\Phi^{3}$, $\lambda\Phi^{4}$ do not break gauge or Lorentz and cannot be forbidden. However, <u>they would destroy U(1)_{PQ} and the axion solution !</u>
- moreover: Non-pt. quantum gravity effects do not respect global symmt. Controlled solutions [Euclid. wormholes] do generate: e^{-Swh} Mp³ ⊈ + h.c. Safe suppression requires Swh > 190, while typically Swh ~ Log(Mp/va) ~ 15 [Kallosh et al. '95, Alonso & Urbano '17, Alvey & Escudero '20]

But where does the U(1) symmetry come from ? The PQ "origin" and "quality" problems ...

• <u>Origin</u>: $U(1)_{PQ}$ is <u>anomalous</u>: is not a symmetry of the theory. The generating functional $Z \sim \int [DA_{\mu}D\Phi] D\Psi D\Psi \exp(iS)$

is <u>not invariant</u> under a PQ transformation. $U(1)_{PQ}$ cannot be "imposed"

- In benchmark axion models, Φ is a complex <u>scalar</u>, and a <u>gauge singlet</u>. Renormalizable terms $\mu^{3}\Phi$, $\mu^{2}\Phi^{2}$, $\mu\Phi^{3}$, $\lambda\Phi^{4}$ do not break gauge or Lorentz and cannot be forbidden. However, <u>they would destroy U(1)_{PQ} and the axion solution !</u>
- moreover: Non-pt. quantum gravity effects do not respect global symmt. Controlled solutions [Euclid. wormholes] do generate: e^{-Swh} Mp³ ⊈ + h.c. Safe suppression requires Swh > 190, while typically Swh ~ Log(Mp/va) ~ 15 [Kallosh et al. '95, Alonso & Urbano '17, Alvey & Escudero '20]
- Quality: Effective PQ opts.: PQ vacuum eng. density < 10⁻¹⁰ V_{QCD}(a) For $f_a \sim 10^{10}$ GeV and effective scale M_P, this implies Eff. Opt. Dim. ≥ 10 [Barr & Seckel '92, Kamionkowski & March-Russel '92, Holman et al. '92, Ghigna et al. '92]

 $U(1)_{PQ}$ should arise automatically as a consequence of first principles. SSB requires VEVs \Rightarrow Lorentz singlets. Rely on <u>local gauge symmetries</u>

 $U(1)_{PQ}$ should arise automatically as a consequence of first principles. SSB requires VEVs \Rightarrow Lorentz singlets. Rely on <u>local gauge symmetries</u>

• Discrete gauge symm. \mathbb{Z}_n : $\Phi \rightarrow e^{i 2\pi/n} \Phi$; $1^{s+} PQ$ opt. $\Lambda^{4-n} \Phi^n$ Requires \mathbb{Z}_{10} or larger [Krauss & Wilczek '89, Dias & al. '03, Carpenter & al. '09, Harigaya & al. '13]

 $U(1)_{PQ}$ should arise automatically as a consequence of first principles. SSB requires VEVs \Rightarrow Lorentz singlets. Rely on <u>local gauge symmetries</u>

- Discrete gauge symm. \mathbb{Z}_n : $\Phi \rightarrow e^{i 2\pi/n} \Phi$; $1^{st} \mathcal{PQ}$ opt. $\Lambda^{4-n} \Phi^n$ Requires \mathbb{Z}_{10} or larger [Krauss & Wilczek '89, Dias & al. '03, Carpenter & al. '09, Harigaya & al. '13]
- Local gauge U(1) + 2 scalars with gauge charges q_1 , q_2 relatively prime $1^{st} PQ$ operator: $\Lambda^{4-q_1-q_2} (\Phi_1^{\dagger})^{q_2} (\Phi_2)^{q_1}$ Requires $q_1 + q_2 \ge 10$ [Barr & Seckel '92]

 $U(1)_{PQ}$ should arise automatically as a consequence of first principles. SSB requires VEVs \Rightarrow Lorentz singlets. Rely on <u>local gauge symmetries</u>

- Discrete gauge symm. \mathbb{Z}_n : $\Phi \rightarrow e^{i 2\pi/n} \Phi$; $1^{st} \mathcal{PQ}$ opt. $\Lambda^{4-n} \Phi^n$ Requires \mathbb{Z}_{10} or larger [Krauss & Wilczek '89, Dias & al. '03, Carpenter & al. '09, Harigaya & al. '13]
- Local gauge U(1) + 2 scalars with gauge charges q_1 , q_2 relatively prime $1^{st} PQ$ operator: $\Lambda^{4-q_1-q_2} (\Phi_1^{\dagger})^{q_2} (\Phi_2)^{q_1}$ Requires $q_1 + q_2 \ge 10$ [Barr & Seckel '92]
- Non-Abelian SU(N)_L x SU(N)_R, $a(x) \in Y_{n \times n}$ "Orbital mode" $Y = U \hat{Y} V^{\dagger} e^{ia/v_a}$

N > 4, \int_{ren} has an automatic rephasing symm. V= V(YY[†]) Y -> $e^{i\xi}$ Y. 1^{s†} PQ opt. Λ^{4-N} det Y dim = N. This requires again N ≥ 10 (Fong, EN '14 [in SU(3)×SU(3)], Di Luzio, Ubaldi, EN '17)

Can we do any better? `Rectangular' gauge symmt.

[Darmé & EN (2021)]

Can we do any better? `Rectangular' gauge symmt.

[Darmé & EN (2021)]

- Take a local SU(m)×SU(n) (m > n) and a scalar multiplet $Y_{ai} \sim (m,\bar{n})$ Gauge invariants are constructed with Kronecker δ and Levi-Civita ϵ
- δ-invariants involve Y[†]Y: They are obviously all Hermitian \Rightarrow accidental U(1): Y → $e^{i\xi}$ Y
- ϵ -invariants (non-Hermitian): <u>there is none</u> $\epsilon_{a\beta...\sigma} Y_{ai} Y_{\beta j} ... Y_{\sigma r} = 0$. Some SU(n) index (i,j,...,r) must coincide: ϵ opts. vanish symmetrically
- Already for SU(3)xSU(2), V(Y) enjoys <u>automatically</u> an <u>exact</u> global U(1)

Can we do any better? `Rectangular' gauge symmt.

[Darmé & EN (2021)]

• Take a local SU(m)×SU(n) (m > n) and a scalar multiplet $Y_{ai} \sim (m,\bar{n})$ Gauge invariants are constructed with Kronecker δ and Levi-Civita ϵ

δ-invariants involve Y⁺Y: They are obviously all Hermitian \Rightarrow accidental U(1): Y -> $e^{i\xi}$ Y

 ϵ -invariants (non-Hermitian): <u>there is none</u> $\epsilon_{a\beta...\sigma} Y_{ai} Y_{\beta j} ... Y_{\sigma r} = 0$. Some SU(n) index (i,j,...,r) must coincide: ϵ opts. vanish symmetrically

Already for SU(3)xSU(2), V(Y) enjoys <u>automatically</u> an <u>exact</u> global U(1)

<u>Note:</u> for a Y_{nxn} square matrix $\mathcal{E}_{a\beta...\sigma} \mathcal{E}_{ij...r} Y_{ai} Y_{\beta j} ... Y_{\sigma r} \propto det Y \neq 0$ Such <u>automatic exact</u> U(1) symmetries are peculiar of local `rectangular' symmetries

Vacuum values of PQ breaking operators

Vacuum values of PQ breaking operators

•Generally more scalars are needed in order to have all $m_q \neq 0$

Take e.g. gauge $G_F = SU(3)_L \times SU(2)_R$ with $Y_{ai} \sim (3,\bar{2})$ and $Z_a \sim (3,1)$

• Two mixed invariants $I_{\epsilon} = \epsilon_{a\beta\gamma} \epsilon_{ij} Y_{ai} Y_{\beta j} Z_{\gamma} \neq 0$ preserves $U(1)_{\epsilon} U(1)_{\delta}$ $I_{\delta} = \epsilon_{ij} (Z^{\dagger}Y)_{i} (Z^{\dagger}Y)_{j} \neq 0$ preserves $U(1)_{\delta} U(1)_{\epsilon}$

However, it can be shown that if $\langle I_{\varepsilon} \rangle \neq 0$, then $\langle I_{\delta} \rangle = 0$ (and viceversa) On the vacuum either one, $U(1)_{\varepsilon}$ or $U(1)_{\delta}$ remain preserved

Vacuum values of PQ breaking operators

•Generally more scalars are needed in order to have all $m_q \neq 0$

Take e.g. gauge $G_F = SU(3)_L \times SU(2)_R$ with $Y_{ai} \sim (3,\bar{2})$ and $Z_a \sim (3,1)$

• Two mixed invariants $I_{\epsilon} = \epsilon_{a\beta\gamma} \epsilon_{ij} Y_{ai} Y_{\beta j} Z_{\gamma} \neq 0$ preserves $U(1)_{\epsilon} U(1)_{\delta}$ $I_{\delta} = \epsilon_{ij} (Z^{\dagger}Y)_{i} (Z^{\dagger}Y)_{j} \neq 0$ preserves $U(1)_{\delta} U(1)_{\epsilon}$

However, it can be shown that if $\langle I_{\varepsilon} \rangle \neq 0$, then $\langle I_{\delta} \rangle = 0$ (and viceversa) On the vacuum either one, $U(1)_{\varepsilon}$ or $U(1)_{\delta}$ remain preserved

Operators for which <O> = 0 do not break the symmetries of the minimum, <u>the vacuum can enjoy a larger symmetry than the Lagrangian</u>. Scalar bosons associated with these symmetries remain massless [Georgi & Pais '75] The axion can remain protected even if V(Y,Z) breaks U(1)PQ

Can symmetries of this type be promoted to realistic PQ symmetries ? Can we learn something beyond `axion issues' ?

Can symmetries of this type be promoted to realistic PQ symmetries ? Can we learn something beyond `axion issues' ?

<u>Origin & quality of accdt. symmt</u>. <= non-Abelian `rectangular' gauge group G_F acting on some set of scalar multiplets.

Can symmetries of this type be promoted to realistic PQ symmetries ? Can we learn something beyond `axion issues' ?

<u>Origin & quality of accdt. symmt</u>. <= non-Abelian `rectangular' gauge group G_F acting on some set of scalar multiplets.

<u>Promoting U(1) to a PQ symmt.</u> requires a mixed QCD anomaly.

- => Quarks must transform under the accidt. U(1) symmt.
- => Hence they must couple to the scalar multiplets
- => Hence they must also transform under G_F

Can symmetries of this type be promoted to realistic PQ symmetries ? Can we learn something beyond `axion issues' ?

<u>Origin & quality of accdt. symmt</u>. <= non-Abelian `rectangular' gauge group G_F acting on some set of scalar multiplets.

<u>Promoting U(1) to a PQ symmt.</u> requires a mixed QCD anomaly.

- => Quarks must transform under the accidt. U(1) symmt.
- => Hence they must couple to the scalar multiplets
- => Hence they must also transform under G_F

The non-Abelian local G_F thus is a flavour symmetry !

The axion: from $\Theta_{QCD} \rightarrow 0$ to CDM to ... SM flavour puzzle??

The axion: from $\Theta_{QCD} \rightarrow 0$ to CDM to ... SM flavour puzzle??

Any non-Abelian gauge symmt. generating a U(1)PQ IS a flavour symmetry!

The axion: from $\Theta_{QCD} \rightarrow 0$ to CDM to ... SM flavour puzzle??

Any non-Abelian gauge symmt. generating a $U(1)_{PQ}$ IS a flavour symmetry !

The guiding principle is that a PQ symmetry of the required high quality must arise automatically from G_F and the field content.

The axion: from $\Theta_{QCD} \rightarrow 0$ to CDM to ... SM flavour puzzle??

Any non-Abelian gauge symmt. generating a $U(1)_{PQ}$ IS a flavour symmetry !

The guiding principle is that a PQ symmetry of the required high quality must arise automatically from G_F and the field content.

General features of G_F symmetries suited for U(1)_{PQ} protection:

- Not all the quarks transform in the same way under G_F
- Some Yukawa quarks originate from different operators
- Mass hierarchies seem to arise rather naturally

The axion: from $\Theta_{QCD} \rightarrow 0$ to CDM to ... SM flavour puzzle??

Any non-Abelian gauge symmt. generating a $U(1)_{PQ}$ IS a flavour symmetry !

The guiding principle is that a PQ symmetry of the required high quality must arise automatically from G_F and the field content.

General features of G_F symmetries suited for U(1)_{PQ} protection:

- Not all the quarks transform in the same way under G_F
- Some Yukawa quarks originate from different operators
- Mass hierarchies seem to arise rather naturally

We are currently studying flavour groups that we would never have considered, had it not been for the axion !