



### **Pranjal Trivedi**

University of Hamburg Hamburg Observatory 

### Work in collaboration with Günter Sigl

(to be submitted; analysis beyond arXiv:1811.07873 Sigl & Trivedi)

# Cosmological Birefringence from Axions



 $10^{-33} \text{ eV} \leq m_a \leq 10^{-28} \text{ eV}$  :  $a \longrightarrow \text{cosm.}$  birefringence. But a cannot be DM at CMB epoch  $m_a \gtrsim 10^{-28} \text{ eV}$  : a can be DM - but (so far): birefringence suppressed if  $T_a(m_a) \ll \Delta \tau_{\text{rec}}$ (rapid oscillations of a during  $\Delta \tau_{\text{rec},99\%} \sim 0.5 \text{ Myr}$ )

 $T_a = 2\pi/m_a \simeq (1 \text{ year})(1.22 \times 10^{-22} \text{ eV})/m_a$ 

# Birefringence from oscillating Axion DM



[Carroll, Field & Jackiw 90, Carrol & Field 91, Harari & Sikivie 92, Carroll 98, Lue, Wang & Kamionkowski 99, Liu+ 06, Feng+ 06, Finelli & Galaverni 09, Arvanitaki+ 10, Galaverni+ 15, Fedderke, Graham & Rajendran 19, Fujita+ 20]



 $\Delta a = [a(z_*) - a_{\text{local}}]$ 



### • This work:

- Consider oscillating a(t),  $\omega_a = m_a$ , phase, start of oscillation
- Recombination Visibility fn.  $V(\eta)$  from Planck, local obs. Window W(t)
- Difference of recombination & local signals
- Obs. CMB are photons arriving together from across  $V(\eta)$





# Axion DM Birefringence



### • Our recent work:

- Consider oscillating a(t),  $\omega_a = m_a$ , phase, start of oscillation
- Recombination **Visibility**  $V(\eta)$ , local Window W(t)
- Obs. CMB are photons arriving together from across  $V(\eta)$
- Difference of recombination & local signals: birefringence



$$\begin{aligned} a(\eta, m_a) &= \Theta \left[ \eta - \eta_{\text{osc}} \left( m_a \right) \right] \times \\ a_0 \cos \left[ m_a \{ \eta - \eta_{\text{osc}} \left( m_a \right) - (\eta_{\text{peak}} - \eta) \} + \delta_0 \right], \end{aligned}$$

$$a_0 = \int\limits_{
m rec.} \delta(\eta - \eta_*) \, a(\eta) d\eta$$



Birefringence from Axion-like Dark Matte

# Axion DM Birefringence



### • Our recent work:

- Consider oscillating a(t),  $\omega_a = m_a$ , phase, start of oscillation
- Recombination **Visibility**  $V(\eta)$ , local Window W(t)
- Obs. CMB are photons arriving together from across  $V(\eta)$
- Difference of recombination & local signals: birefringence

| Time scale Planck                       |                                               | Corresponding                | Time Period                |  |
|-----------------------------------------|-----------------------------------------------|------------------------------|----------------------------|--|
| or                                      | Mission                                       | ALP mass                     | $T_a(m_a) =$               |  |
| Frequency                               | value                                         | $m_a~({ m eV})$              | $2\pi/m_a~({ m yr})$       |  |
| $\mathcal{T}_{\mathrm{full \ survey}}$  | 885  days                                     | $5.41 \times 10^{-23}$       | 2.423                      |  |
| $\mathcal{T}_{	ext{time-ordered data}}$ | $1 \mathrm{day}  2 \mathrm{m}  03 \mathrm{s}$ | $4.78 \times 10^{-20}$       | $2.74 \times 10^{-3}$      |  |
| $\mathcal{T}_{	ext{rotation}}$          | $1 \min$                                      | $3.45 	imes 10^{-17\dagger}$ | $3.80	imes10^{-6\dagger}$  |  |
| $\mathcal{F}_{	ext{sampling}}$          | $180.4~\mathrm{Hz}$                           | $3.73 	imes 10^{-13\dagger}$ | $3.51	imes10^{-10\dagger}$ |  |
|                                         |                                               |                              |                            |  |



### Constraints on the Fraction of DM in the form of ALPs



To give constraints on axion-photon coupling.....

Birefringence from Axion-like Dark Matter

## Isotropic Birefringence Constraints



| Cosmological                              | Corresponding         | Time Period           | Redshift of  | Oscillation Epoch                       | Feature produced in the                     |
|-------------------------------------------|-----------------------|-----------------------|--------------|-----------------------------------------|---------------------------------------------|
| Epoch $t$ or                              | ALP mass              | $T_a(m_a) =$          | Oscillation  | $t_{ m osc} = 	au_{ m age}(z_{ m osc})$ | Birefringence Signal $\Delta a$             |
| Time scale $\tau$                         | $m_a~({ m eV})$       | $2\pi/m_a~({ m Myr})$ | $z_{ m osc}$ | (Myr)                                   | from Recombination                          |
| $t_{osc}(m_a) \lesssim t_{ m rec,end}$    | $3.9 	imes 10^{-29}$  | 3.4                   | 600          | 0.99                                    | $a_{\rm rec}$ signal rises above zero       |
| $T_a(m_a)/2 \lesssim \Delta 	au_{ m rec}$ | $1.7 \times 10^{-28}$ | 0.75                  | 1530         | 0.21                                    | maximum $a_{\rm rec}$ signal at 1st peak    |
| $T_a(m_a)\sim \Delta 	au_{ m rec}$        | $2.6 	imes 10^{-28}$  | 0.50                  | 1950         | 0.14                                    | 1st null of $a_{\rm rec}$ signal            |
| $t_{ m osc}(m_a) = t_{ m eq}$             | $6.8\times10^{-28}$   | 0.19                  | 3400         | 0.051                                   | T-indep. $m_a$ limit: std. ALP DM           |
| $T_a(m_a) \ll \Delta 	au_{ m rec}$        | $2.9\times10^{-27}$   | 0.046                 | 7570         | 0.012                                   | exponential damping of $a_{\rm rec}$ signal |

Pranjal Trivedi (Hamburg)

Birefringence from Axion-like Dark Matter

## Isotropic Birefringence Forecasts



## Isotropic Birefringence Forecasts



## Hint!? of Cosmic Birefringence



Breakthrough analysis of Planck 2018 CMB polarization data

Compared Birefringence from <u>CMB</u>  $\leftrightarrow$  <u>Galactic</u> CMB <u>foreground</u>

--> isolated detector (HFI) miscalibration angle uncertainty

--> reduced systematic error by x 2

#### PHYSICAL REVIEW LETTERS 125, 221301 (2020)

cf.  $0.31 \pm 0.05 (\pm 0.28)$ Planck Collaboration I. XLIX 2016

Y. Minami

Featured in Physics

**Editors' Suggestion** 

### New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data

Yuto Minami<sup>®\*</sup> High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Eiichiro Komatsu<sup>®†</sup>

We search for evidence of parity-violating physics in the Planck 2018 polarization data and report on a new measurement of the cosmic birefringence angle  $\beta$ . The previous measurements are limited by the systematic uncertainty in the absolute polarization angles of the Planck detectors. We <u>mitigate this</u> systematic uncertainty completely by simultaneously determining  $\beta$  and the angle miscalibration using the observed cross-correlation of the *E*- and *B*-mode polarization of the cosmic microwave background and the Galactic foreground emission. We show that the systematic errors are effectively mitigated and achieve a factor-of-2 smaller uncertainty than the previous measurement, finding  $\beta = 0.35 \pm 0.14$  deg (68% C.L.), which excludes  $\beta = 0$  at 99.2% C.L. This corresponds to the statistical significance of 2.4 $\sigma$ .

# Interpretation of Cosmic Birefringence

### $\beta = 0.35 \pm 0.14 \ \beta$



#### Critical Assessment

- Dust effects: full investigation (see recent Galactic dust EB Clark 2105.00120)
- Foreground effects and EB
- Fresh look at systematics, instrument modelling
- Low significance 2.4 $\sigma$  : needs to be compared to other CMB data
- Independent Verification!

Future Observations: SO, BICEP Array, CMB-S4, CMB-HD, LiteBIRD, PICO

### Y. Minami

### cf. $0.31 \pm 0.05 (\pm 0.28)$ Planck Collaboration I. XLIX 2016









### CMB Birefringence probe of Axion(-like) Dark Matter



• Cosmic birefringence constraints are <u>upto 4 orders</u> <u>stronger</u> than x-ray AGN in cluster constraints (Chandra).

Mass scales probed by CMB in log (m<sub>a</sub>/eV)
 -29 to -27 and -26 to -21 (upto FDM)

• CMB-S4, PICO, CMB-HD can all improve by 1-2 orders of mag. in axion-photon coupling

• Exciting obs. hint of 0.35 (0.14) isotropic birefringence —> if confirmed <u>could reveal axions contributing to</u> <u>dark matter</u>



CMB Birefrengence robust probe of aDM :

#### Independent of

- Astrophysical magnetic fields, unknown P\_B (k)
- DM density assumptions/enhancements/spikes
- Astrophysical polarised source

## Thank you