Isotropic Birefringence Signals from Axion-like Dark Matter

Pranjal Trivedi
University of Hamburg
Hamburg Observatory

Work in collaboration with Günter Sigl
(to be submitted; analysis beyond arXiv:1811.07873 Sigl & Trivedi)
Cosmological Birefringence from Axions

Inhomogeneous axion (or axion-like) field a

\rightarrow optically active medium

\rightarrow rotation of polarization of light (birefringence)

achromatic effect (cf. Faraday rotation $\propto 1/\lambda^2$)

Inhomogeneous axion (or axion-like) field a

\rightarrow optically active medium

\rightarrow rotation of polarization of light (birefringence)

achromatic effect (cf. Faraday rotation $\propto 1/\lambda^2$)

10^{-33} eV $\lesssim m_a \lesssim 10^{-28}$ eV \rightarrow cosm. birefringence. But a cannot be DM at CMB epoch

$m_a \gtrsim 10^{-28}$ eV \rightarrow a can be DM - but (so far): birefringence suppressed if $T_a(m_a) \ll \Delta \tau_{\text{rec}}$

$\Delta \alpha = s_{\alpha \gamma} = \frac{s_{\alpha \gamma}}{2\pi f_a}$

$r = (1/2) m_a^2 a^2$

$\Delta \alpha \approx g_{\alpha \gamma} \int ds \, n^\mu \partial_\mu a \approx \frac{g_{\alpha \gamma}}{2} \Delta a$

(re rapid oscillations of a during $\Delta \tau_{\text{rec,99\%}} \sim 0.5$ Myr)

$T_a = 2\pi/m_a \approx (1 \text{ year}) (1.22 \times 10^{-22} \text{ eV})/m_a$
Birefringence from oscillating Axion DM

Inhomogeneous axion (or axion-like) field a

\rightarrow optically active medium

\rightarrow rotation of polarization of light (birefringence)

achromatic effect (cf. Faraday rotation $\propto 1/\lambda^2$)

\[\Delta \alpha \approx \frac{g_{a\gamma}}{2} \int C \, d\eta \, n^\mu \partial_\mu a \approx \frac{g_{a\gamma}}{2} \Delta a \]

\[g_{a\gamma} = \frac{s_{\alpha_{em}}}{2\pi f_a} \]

\[\Delta a = [a(z_*) - a_{\text{local}}] \]

\[\rho_a = (1/2) m_a^2 a^2 \]

This work:

- Consider oscillating $a(t)$, $\omega_a = m_a$, phase, start of oscillation
- Recombination Visibility fn. $V(\eta)$ from Planck, local obs. Window $W(t)$
- Difference of recombination & local signals
- Obs. CMB are photons arriving together from across $V(\eta)$
• Our recent work:
 - Consider oscillating \(a(t) \), \(\omega_a = m_a \), phase, start of oscillation
 - Recombination Visibility \(V(\eta) \), local Window \(W(t) \)
 - Obs. CMB are photons arriving together from across \(V(\eta) \)
 - Difference of recombination & local signals: birefringence

\[\Delta a = a(z_\ast) - a_{\text{local}} \]

\[a(\eta, m_a) = \Theta [\eta - \eta_{\text{osc}}(m_a)] \times a_0 \cos [m_a (\eta - \eta_{\text{osc}}(m_a) - (\eta_{\text{peak}} - \eta)) + \delta_0] , \]

\[a_0 = \int_{\text{rec.}} \delta(\eta - z_\ast) a(\eta) \, d\eta \]
Axion DM Birefringence

- **Our recent work:**
 - Consider oscillating $a(t), \omega_a = m_a$, phase, start of oscillation
 - Recombination Visibility $V(\eta)$, local Window $W(t)$
 - Obs. CMB are photons arriving together from across $V(\eta)$
 - **Difference** of recombination & local signals: birefringence

Table:

<table>
<thead>
<tr>
<th>Time scale or Frequency</th>
<th>Planck Mission</th>
<th>Corresponding m_a (eV)</th>
<th>$T_a(m_a) = 2\pi/m_a$ (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{full survey}}$</td>
<td>885 days</td>
<td>5.41×10^{-23}</td>
<td>2.423</td>
</tr>
<tr>
<td>$T_{\text{time-ordered data}}$</td>
<td>1 day 2 m 03 s</td>
<td>4.78×10^{-20}</td>
<td>2.74 $\times 10^{-3}$</td>
</tr>
<tr>
<td>T_{rotation}</td>
<td>1 min</td>
<td>3.45×10^{-17}</td>
<td>3.80 $\times 10^{-5}$</td>
</tr>
<tr>
<td>T_{sampling}</td>
<td>180.4 Hz</td>
<td>3.73×10^{-13}</td>
<td>3.51 $\times 10^{-10}$</td>
</tr>
</tbody>
</table>
Constraints on the Fraction of DM in the form of ALPs

\[F = \frac{\Omega_a}{\Omega_c} \]

\[\sqrt{F_a} \text{ multiplies } (\Delta a/a_0) \text{ below} \]

To give constraints on axion-photon coupling.....
Isotropic Birefringence Constraints

Axion–photon coupling $g_{\gamma\gamma} (\text{GeV}^{-1})$

ALP mass $m_a (\text{eV})$

- $t_{\text{osc}}(m_a) \lesssim t_{\text{rec, end}}$
- $T_a(m_a) \lesssim \Delta t_{\text{rec}}$
- $t_{\text{osc}}(m_a) \approx t_{\text{eq}}$
- $T_a(m_a) \ll \Delta t_{\text{rec}}$

$g_{\gamma\gamma} \approx \frac{\Delta \phi}{\sqrt{F_a} \Delta a} = \frac{2 \Delta \alpha}{\sqrt{F_a} \Delta a}$

$\Delta \alpha$ (degrees) $\lesssim 1.0$

$0.31 \pm 0.05 (\pm 0.28)$ Planck (2016) XLIX

<table>
<thead>
<tr>
<th>Epochal Time t or τ</th>
<th>Corresponding ALP mass $m_a (\text{eV})$</th>
<th>Time Period $T_a(m_a) = 2\pi/m_a (\text{Myr})$</th>
<th>Redshift of Oscillation z_{osc}</th>
<th>Oscillation Epoch $t_{\text{osc}} = \tau_{\text{age}}(z_{\text{osc}}) (\text{Myr})$</th>
<th>Feature produced in the Birefringence Signal Δa from Recombination</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{\text{osc}}(m_a) \lesssim t_{\text{rec, end}}$</td>
<td>3.9×10^{-29}</td>
<td>3.4</td>
<td>600</td>
<td>0.99</td>
<td>a_{rec} signal rises above zero</td>
</tr>
<tr>
<td>$T_a(m_a)/2 \lesssim \Delta t_{\text{rec}}$</td>
<td>1.7×10^{-28}</td>
<td>0.75</td>
<td>1530</td>
<td>0.21</td>
<td>maximum a_{rec} signal at 1st peak</td>
</tr>
<tr>
<td>$T_a(m_a) \approx \Delta t_{\text{rec}}$</td>
<td>2.6×10^{-28}</td>
<td>0.50</td>
<td>1950</td>
<td>0.14</td>
<td>1st null of a_{rec} signal</td>
</tr>
<tr>
<td>$t_{\text{osc}}(m_a) = t_{\text{eq}}$</td>
<td>6.8×10^{-28}</td>
<td>0.19</td>
<td>3400</td>
<td>0.051</td>
<td>T-indep. m_a limit: std. ALP DM</td>
</tr>
<tr>
<td>$T_a(m_a) \ll \Delta t_{\text{rec}}$</td>
<td>2.9×10^{-27}</td>
<td>0.046</td>
<td>7570</td>
<td>0.012</td>
<td>exponential damping of a_{rec} signal</td>
</tr>
</tbody>
</table>
Isotropic Birefringence Forecasts

Birefringence from Axion-like Dark Matter

Pranjal Trivedi (Hamburg)
Isotropic Birefringence Forecasts

Birefringence from Axion-like Dark Matter

Pranjal Trivedi (Hamburg)
Hint! of Cosmic Birefringence

Breakthrough analysis of Planck 2018 CMB polarization data

Compared Birefringence from CMB ↔ Galactic CMB foreground

→ isolated detector (HFI) miscalibration angle uncertainty

→ reduced systematic error by x 2

Y. Minami

cf. 0.31 ± 0.05 (±0.28) Planck Collaboration I. XLIX 2016

New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data

Yuto Minami*

High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Eiichiro Komatsu†

We search for evidence of parity-violating physics in the Planck 2018 polarization data and report on a new measurement of the cosmic birefringence angle β. The previous measurements are limited by the systematic uncertainty in the absolute polarization angles of the Planck detectors. We mitigate this systematic uncertainty completely by simultaneously determining β and the angle miscalibration using the observed cross-correlation of the E- and B-mode polarization of the cosmic microwave background and the Galactic foreground emission. We show that the systematic errors are effectively mitigated and achieve a factor-of-2 smaller uncertainty than the previous measurement, finding $\beta = 0.35 \pm 0.14$ deg (68% C.L.), which excludes $\beta = 0$ at 99.2% C.L. This corresponds to the statistical significance of 2.4σ.
Axion-Like Dark Matter Constraints from Parametric Resonance & CMB Birefringence

Interpretation of Cosmic Birefringence

\[\beta = 0.35 \pm 0.14 \]

Critical Assessment
- Dust effects: full investigation (see recent Galactic dust EB - Clark 2105.00120)
- Foreground effects and EB
- Fresh look at systematics, instrument modelling
- Low significance 2.4\(\sigma\) : needs to be compared to other CMB data
- Independent Verification!

Future Observations:
- SO, BICEP Array, CMB-S4, CMB-HD, LiteBIRD, PICO

Our theory constraints & forecasts:

Y. Minami

Pranjal Trivedi (Hamburg) Axion-Like Dark Matter Constraints from Parametric Resonance & CMB Birefringence

Planck Collaboration I. XLIX 2016

cf.

\[0.31 \pm 0.05 \text{ (} \pm 0.28 \text{) } \]
Cosmic birefringence constraints are up to 4 orders stronger than x-ray AGN in cluster constraints (Chandra).

- Mass scales probed by CMB in $\log (m_a/\text{eV})$:
 -29 to -27 and -26 to -21 (up to FDM)

- CMB-S4, PICO, CMB-HD can all improve by 1-2 orders of magnitude in axion-photon coupling

- Exciting obs. hint of 0.35 (0.14) isotropic birefringence \rightarrow if confirmed could reveal axions contributing to dark matter
Thank you