

Coannihilating Dark Matter and the B-Physics Anomalies

Sokratis Trifinopoulos 2021 Patras Workshop 17 June 2021

[M. Baker, D. Faroughy, ST] soon to appear!

B-Physics Anomalies

→ $b \rightarrow s\ell\ell$: Deficit of the neutral-current transition in μ vs. *e*

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \overline{\mu})}{\mathcal{B}(B \to K^{(*)} e \overline{e})}$$

- ► R_K survived the latest update by the LHCb even after employing the full dataset of Run I and II <u>independently</u> at 3.1 σ !
- Fits obtained by including also other anomalous observables in this channel and varying relevant NP WCs yield pulls at a staggering 5σ level!
- → $b \rightarrow c\tau v$: Enhancement of the charged-current transition in τ vs. ℓ

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \overline{\nu})}{\mathcal{B}(B \to D^{(*)} \ell \overline{\nu})} \approx 3\sigma$$

[BaBar] 1303.0571, [Belle] 1612.00529, 1908.01848 [LHCb] 1711.02505, 1903.09252

[LHCb] 1903.09252

1705.05802, 2103.11769

Vector Leptoquark and 4321!

- Leptoquarks (LQs), i.e. particles that couple to quark-lepton currents, are the only viable candidates to a combined solution to the *B*-physics anomalies.
- ➤ In particular, the vector LQ $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ provides the most compelling explanation, since it can simultaneously accommodate both anomalies!
- ➤ It is realized as a gauge boson of spontaneously broken gauge symmetries: the so-called '4321' models based on the $SU(4) \times SU(3)' \times SU(2)_L \times U(1)_X$ group (originating from the Pati-Salam model).

DM and coannihilation effects

There are 4321 multiplets that can host a DM candidate!

 $\Psi = (\underbrace{\psi^1 \psi^2 \psi^3 \chi}_{\text{top-like partner } \psi \sim (\mathbf{3}, \mathbf{1})_{2/3}}^T \rightarrow \text{singlet, two Majorana fermions mass eigenstates } \chi_1, \chi_2$

 $\blacktriangleright \chi$ receives a naturally small Majorana mass $\longrightarrow \Delta_{\psi} \equiv \frac{m_{\psi} - m_{\chi_1}}{m_{\chi_1}} \lesssim 0.3$

- \succ Coannihilating effects regulate the relic abundance for varying $\Delta_{\psi_{..}}$
- ➤ The dominant process that sets the primordial relic abundance for $m_{\chi} \sim m_{\psi} < m_U$ is $\overline{\chi}_1 \psi \rightarrow SM SM$, mediated via *U* (LQ portal to DM).

Relic surface

Collider constraints (ψ pair-production)

> Direct and indirect DM detection constraints are not relevant. Collider searches for the ψ are the only viable option.

> We study ψ pair-production and find that due to the compression of the mass spectrum, the decay products of the ψ carry low momenta and fail to pass the experimental selection criteria of existing searches.

Collider constraints (ψ pair-production)

➤ We propose a new search based on a MET-sensitive novel search.

 \blacktriangleright We estimate that the search will set a lower bound of 500 GeV for m_y.

Collider constraints (ψ -onium)

- Another important consequence of the compressed spectrum is the tiny decay rate of ψ . These particles are enough long-lived in order to hadronize after their production.
- Bound QCD states $(\bar{\psi}\psi)$ (anologous to quarkonia) may lead to distinguishing signatures via EW decay to dileptons.

