A search for unvirialized axions in ADMX run 1b

This work was supported by the U.S. Department of Energy through Grants No DE-SCooog8oo, No. DE-SCooog723, No. DE-SCoo10296, No. DE-SCoo10296, No. DE-SCoo10280, No. DE-SCoo11665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

ROYAL

OF LONDON

HOLLOWAY

Shriram Jois (for the ADMX collaboration)

Run 1b analysis review

ROYAL HOLLOWAY UNIVERSITY

14 σ cut on power \rightarrow produced 429,978 triggers from 91,328 scans.

Removed data with a Q < 10,000 and Q>120,000.

Data with frequency less than 677.9 MHz and 808.1 MHz were removed.

Removed the synthetic axion injections and RFI signals

Triggers that persisted in at least 30% of the scan were either at 686.6 MHz or 792 MHz, neither of these followed a Lorentzian line shape and therefore removed.

Alex Hipp gave a detailed overview of HiRes and run 1c yesterday

Exclusion plot

Power due to axion conversion can be related to noise power measured,

$$P_E \varepsilon = g_{a\gamma\gamma}^2 \frac{\rho_a}{m_a} B_0^2 V C_{010} Q_L$$

arepsilon is the effective contribution. This includes,

- 50 % of the power gets deposited in the walls
- All the axion power is not in a single bin
- Axion signal moves as the cavity frequency is tuned

I set the limit on the axion density using,

$$\frac{\rho}{\rho_a} = \left(\frac{12\varepsilon kTb}{3.3 \times 10^{-23} \mathrm{W}}\right) \left(\frac{0.4}{C_{010}}\right) \left(\frac{0.36}{g\gamma}\right)^2 \left(\frac{740 \mathrm{MHz}}{f}\right) \left(\frac{45000}{Q}\right).$$

Exclusion plot

Summary

ROYAL HOLLOWAY UNIVERSITY OF LONDON

- HiRes looks for axion flows that are due to late in-fall into the galaxy and are not sufficiently thermalized.
- Run 1b high resolution search covered 677.9 MHz and 808.1 MHz. Alex Hipp is working on run 1c at UF. (yesterday's talk).
- We included the effect of doppler shift on the axion signal in run 1b analysis.
- The exclusion limit for the hires data was set on the fraction of the axion flow that are not virialized.

circa 2018