

Very high Q-factor dielectrical microwave resonator in high magnetic field for axion dark matter search

Raffaele Di Vora

On behalf of the QUAX collaboration

The haloscope: a resonant axion dark matter detector

Expected signal and noise

$$P_{axion} \approx 2.2 \cdot 10^{-24} W \left(\frac{V}{0.0268 I}\right) \left(\frac{B}{8 T}\right)^2 \left(\frac{C}{0.59}\right) \left(\frac{g_{\gamma}}{-0.97}\right)^2 \cdot \left(\frac{\rho_a}{0.45 \ GeV \ cm^{-3}}\right) \left(\frac{\nu_c}{9.067 \ GHz}\right) \left(\frac{Q_L}{201000}\right)$$

$$\sigma_{P_{noise}} \sim k_B T_{sys} \sqrt{\frac{\Delta \nu}{\Delta t}} = 2.2 \cdot 10^{-23} W \left(\frac{T_s}{1 K}\right) \left(\frac{\Delta \nu}{9 \, kHz}\right)^{\frac{1}{2}} \left(\frac{3600 \, s}{\Delta t}\right)^{\frac{1}{2}}$$

Electric field and surface loss for the TM_{010} mode

QUAX Collaboration

Cavity coolings: Q factor vs temperature

Cu magnetoresistance measurements @CAPP: slight surface conductivity increase (\approx 3%)... instead about \approx 50% increase seen!

Mechanical tuning demonstration

$\Delta x \; [\mathrm{mm}]$	f_{res} [GHz]	$Q (10^6)$	$C_{030} \times V \ (10^{-6} \ {\rm m}^3)$	$C_{030} \times V \times Q \ (\mathrm{m^3})$
0	10.92	2.01	24.75	49.7
0.25	10.81	1.766	26.23	46.3
0.5	10.71	1.80	27.62	49.7
0.75	10.62	1.69	28.94	48.9
1	10.53	1.49	30.00	44.7
1.25	10.45	1.39	31.31	43.5
1.5	10.38	1.39	32.16	44.7

Summary

Cavity	V	C _{nml}	$V_{eff} = C \cdot V$	ν_{cav}	Q_0	Reference
Cu	80.6 cm ³	0.69	55.6 cm ³	10.4 GHz	7.6 · 10 ⁴ (@8 T)	PRD 99, 101101(R)
Nb-Ti	36.4 cm ³	0.59	21.5 cm ³	9.07 GHz	4.02 · 10 ⁵ (@2 T)	PRD 103, 102004
This work	1056 cm ³	0.033	34.7 cm ³	10.35 GHz	$9.2 \cdot 10^{6} (@8 T)$	

Thank you for the attention!

Appendix 1 - Haloscope scan rate

QUAX Collaboration

Very high Q-factor dielectrical mw resonator

16th Patras Workshop 10/11

Appendix 2 - Cavity coolings: losses and frequency vs temperature

Red line postulates that at the 4K point all the losses happen in the copper

QUAX Collaboration

Very high Q-factor dielectrical mw resonator