16th Patras Workshop on Axions, WIMPs and WISPs

Examining axion-like particles with superconducting radio-frequency cavity

D. Kirpichnikov¹, D. Salnikov^{1,2}, <u>P. Satunin¹</u>, M. Fitkevich^{1,3}

¹Institute for Nuclear Research of the Russian Academy of Science ²Lomonosov Moscow State University ³Moscow Institute of Physics and Technology

 16^{th} of June, 2021

LSW-type experiments

Traditional LSW experiments with microwaves with RF cavities superconducting magnet signalsourcepoweramplifierTraditional LSW experiments with microwaves with RF cavities

- ALP Production: EM cavity mode + magnetic field \rightarrow ALP
- ALP Detection: ALP + magnetic field \rightarrow signal mode

SRF cavities — larger quality factor and amplitudes for EM modes \mathbf{but} external magnetic field destroys superconducting state

■ In SRF cavities additional EM mode instead of magnetic field

The scheme of the proposed setup

Condition on the surface magnetic field for a pump mode: |B| < 0.1 T.

Axion electrodynamics

The Lagrangian

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\partial_{\mu}a \ \partial^{\mu}a - \frac{1}{2}m_{a}^{2}a^{2} + \frac{g_{a\gamma\gamma}}{4}a \ F_{\mu\nu}\tilde{F}^{\mu\nu} \ , \quad (1)$$

• ALP production: two cavity modes $\mathbf{TM}_{npq}(\omega_1) + \mathbf{TE}_{mlk}(\omega_2)$

$$\left(\partial_{\mu}\partial^{\mu} + m_{a}^{2}\right)\boldsymbol{a}(\vec{x},t) = \frac{g_{a\gamma\gamma}}{4}\mathbf{F}_{\mu\nu}\tilde{\mathbf{F}}^{\mu\nu},\tag{2}$$

 $a(\vec{x},t) = a_+(\vec{x},t) + a_-(\vec{x},t), \qquad \omega_\pm = \omega_1 \pm \omega_2.$

$$a_{\pm}(\vec{x},t) = -\frac{g_{a\gamma\gamma}}{4\pi} e^{-i\omega_{\pm}t} \int_{V_{cav}} d^3x' \; \frac{(\vec{E} \cdot \vec{B})_{\pm}(\vec{x}')}{|\vec{x} - \vec{x}'|} \cdot e^{ik_{\pm}|\vec{x} - \vec{x}'|}.$$
 (3)

■ ALP detection:

$$\partial_{\mu}F^{\mu\nu} = g_{a\gamma\gamma}\,\tilde{F}^{\mu\nu}\partial_{\mu}a.\tag{4}$$

Comparison of $\langle \rho_+^E \rangle$ and $\langle \rho_-^E \rangle$

Comparison of various combinations of pump modes

Comparison of various geometry of cavity

Figure 4 - The time-averaged energy density of ALPs for $\rm TM_{010}$ + $\rm TE_{011}$ pump modes for various cavity geometry

7/11

Radiation pattern

Figure 5 - Radiation pattern for $TM_{010} + TE_{011}$ pump modes for various masses of ALPs and cylindrical cavity geometry

Experimental model sensitivity

Figure 6 - Dependence of the coupling constant $g_{a\gamma\gamma}$ on the mass of ALPs m_a for various pump modes of the production cavity for the TM₀₁₀ mode of the detecting cavity

References

• More detailed results are posted in the article:

D. Salnikov, P. Satunin, D. Kirpichnikov, M. Fitkevich, «Examining axion-like particles with superconducting radio-frequency cavity». J. High Energ. Phys. 2021, **143** (2021). doi:10.1007/JHEP03(2021)143 [arXiv:2011.12871 [hep-ph]];

■ The program code is posted on the website: https://github.com/dmitry-salnikov-msu/Axion.

Thank you for attention!

11/11