New dark photon search with millimeter waves above 20 GHz

A. Miyazaki (Uppsala University and CERN)

The mass range between 10⁻⁵ and 10⁻⁴ eV is wide open

2

Previous Light-shining through a wall experiments and THz gap

and S. W. Rieger PRD 88 075014 (2013)

NIMA 770 76 (2015)

Laser: ALPS collaboration PLB 689 149 2010 X-ray: T. Inada, et al., PLB, 722, 301-304 (2013)

Fabry-Perot resonator for m_{γ} ,<30 GHz

- Finesse $\mathcal{F} = 2\pi / (1 R_e R_f) = 3300$
- Loaded Q $Q_L = \mathcal{F} \times L/\lambda = 6.6 \times 10^4$
- Band-width of the cavities: $BW = f/Q_L = 0.45$ MHz E
- Spatial resonance width: $\delta L = \lambda/2\mathcal{F} = 1.5 \,\mu\text{m}$
- Resonator build-up factor $\beta = \mathcal{F}/\pi \sim 1000$
- Coupling between two resonators is to be evaluated

$$B(t, \mathbf{r}) = \chi m_{\gamma'}^2 \int_{V'} \frac{\exp(ik_{\gamma'}|\mathbf{r} - \mathbf{r}'|)}{4\pi |\mathbf{r} - \mathbf{r}'|} \exp(-i\omega t) a(\mathbf{r}') dV'$$

Synchronize the generator and the detector

Synchronize the generator and the detector

Future of millimeter-wave dark photon search

Super-stable high-power gyrotron by PLL

Physics reach

$$\chi \sim \left(\frac{2P_{NEP}}{P_{in}\beta_1\beta_2\eta(m_{\gamma'})\sqrt{t_{op}}}\right)^{\frac{1}{4}}$$

Coherent detection $P_{NEP} = k_B T_{sys} \sqrt{\Delta \nu}$ Noise $T_{sys} = 10$ K/Hz

8

Experiment	1-a	1-b	2	3	4	
f [GHz]	28	28	28	170	170	
<i>P_{in}</i> [W]	20	20	2e4	1e6	2e4	Sr 2
β_1	1000	1000	1000	1	1000	ete
β_2	1	1000	1000	1	1000	an a
Efficiency $\eta(m_{\gamma'})$	0.1	0.1	0.1	0.1	0.1	para
Δν [Hz]	1e-2	1e-2	10	1e6	1e6	b
P _{NEP} [W/Hz ^{1/2}]	1e-23	1e-23	1e-22	1e-20	1e-25	nixir
t _{op}	100 s	100 s	1 day	30 min	1 day	

One challenge is noise handling → Experience from CROWS

Conclusion

- Light-Shining-Through-a-Wall experiments with 30 GHz may be able to address a niche in the previous and future constraints of dark photon search
 - Resonator development
 - Narrow-band coherent detection
- New technology may open a new opportunity in WISPs search
 - Super-stable high-power microwave generator
 - Hypersensitive superconducting quantum sensor
- Acknowledgment (fruitful discussions during Covid-19 pandemic)
 - CERN (CROWS): Fritz Caspers, Michael Betz
 - Yale University: Penny Slocum
 - INFN and NEST Pisa: Paolo Spagolo, Francesco Giazotto, Federico Paolucci, Andrea Tartari, Gianluca Lamanna
 - KIT: John Jelonnek, Manfred Thumm, Gerd Gantenbein, Stefan Illy
 - Uppsala University: Dragos Dancila, Tor Lofnes
 - The University of Tokyo: Shoji Asai, Toshio Namba, Toshiaki Inada
 - Simons Array: Shunsuke Adachi

backup

Kinetic mixing between photon and dark photon

→ Photon is a tool to investigate light dark photon

Super narrow-band gyrotron by Phase lock loop

• In March 2021, a Russian group reported Hz-level absolute bandwidth with 170 kHz 25 kW gyrotron

Promising and interesting classical microwave engineering

Is coherent detection useful forever? No! Standard quantum limit

S.K. Lamoreaux et al Phys Rev D 98 035020 (2013)

Transition Edge Sensor (TES) at NEST & INFN Pisa

TES operated in a dilution refrigerator (20-100 mK) in Pisa

Conventional TES can reach 10^{-17} W/Hz^{1/2} with promising improvement to reach 10^{-20} W/Hz^{1/2} and could even reach 10^{-25} W/Hz^{1/2} (Josephson escape sensor)

F. Paolucci et al Journal of Applied Physics 128, 194502 (2020)