## Leading Logs in QCD Axion EFT

Lennert Thormaehlen (Heidelberg University)

in collaboration with

G. Alonso-Álvarez (McGill), F. Ertas (RWTH Aachen), Joerg Jaeckel (Heidelberg U), F. Kahlhoefer (RWTH Aachen)

[arXiv:2101.03173]

Patras Workshop 15/6/2021

## Axion EFT



Large separation of scales → Effective field theory description

$$\mathcal{L} = -\frac{1}{f_a} \sum_F c_{FF} \frac{\alpha_F}{8\pi} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{f_a} \sum_f c_f \frac{\partial_{\mu} a}{2} \bar{f} \gamma^{\mu} \gamma_5 f$$

- Symmetries:
  - Shift symmetry  $a \rightarrow a + const$
  - SM gauge symmetries

## Axion EFT



Large separation of scales → Effective field theory description

$$\mathcal{L} = -\frac{1}{f_a} \sum_F c_{FF} \frac{\alpha_F}{8\pi} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{f_a} \sum_f c_f \frac{\partial_\mu a}{2} \bar{f} \gamma^\mu \gamma_5 f$$

- Symmetries:
  - Shift symmetry  $a \rightarrow a + const$
  - SM gauge symmetries

### We can calculate observables using the EFT

- For example: rate of  $K \to \pi + a$  in NA62
- NA62 is expected to improve sensitivity to  $K \to \pi + {\rm inv}$  by an order of magnitude



# Loops in the EFT



 $K \rightarrow \pi \, + \, a$  is induced at loop level



### Calculation gives log-divergent result

$$\Gamma \propto \left| \frac{c_q}{f_a} \cdot \log \left( \frac{\Lambda^2}{m_q^2} \right) \right|^2$$

# Loops in the EFT



 $K \rightarrow \pi \, + \, a$  is induced at loop level



Calculation gives log-divergent result

$$\Gamma \propto \left| \frac{c_q}{f_a} \cdot \log \left( \frac{\Lambda^2}{m_q^2} \right) \right|^2$$

leura

 $\Rightarrow$  If cut-off  $\Lambda \sim f_a$ : large log enhancement  $\to$  Leading Log

$$\log\left(\frac{f_a^2}{m_t^2}\right) \sim 22 \quad \text{for } f_a = 10^7 \,\text{GeV}$$



# Loops in QCD axion models



### Benchmark model 1: KSVZ

No PQ-charge of SM fermions → no tree-level axion coupling to SM quarks





# Loops in QCD axion models

 $\sim f_a$  uv complete axion models

#### Benchmark model 1: KSVZ

No PQ-charge of SM fermions → no tree-level axion coupling to SM quarks



### Benchmark model 2: DFSZ

Contains 2HDM ightarrow new degrees of freedom below  $f_a$  .

$$\Gamma \propto \log \left(\frac{m_{H^{\pm}}^2}{m_q^2}\right) \lesssim 3.5$$

⇒ No large log in *typical* QCD axion models



### New Model



Is there a QCD axion model with a large log??

• Requirements: axion-quark coupling + no new physics below  $f_a$ 

$$\mathcal{Z} \supset -\frac{\Phi}{\Lambda} H \bar{Q}_L q_R + \text{h.c.} \xrightarrow{PQ} -Y e^{i\frac{a}{f_a}} H \bar{Q}_L q_R + \text{h.c.}$$
 SSB

## New Model



Is there a QCD axion model with a large log??

• Requirements: axion-quark coupling + no new physics below  $f_a$ 

$$\mathcal{Z} \supset -\frac{\Phi}{\Lambda} H \bar{Q}_L q_R + \text{h.c.} \xrightarrow{PQ} -Y e^{i\frac{a}{f_a}} H \bar{Q}_L q_R + \text{h.c.}$$

This still needs to be UV completed ightarrownew heavy *F-quarks* with  $m_F \gtrsim f_a$ 



#### Calculation of Kaon decay rate gives

$$\Gamma \propto \left| \log \left( \frac{m_F^2}{m_q^2} \right) \right|^2 \gtrsim \left| \log \left( \frac{f_a^2}{m_q^2} \right) \right|^2$$
 good sensitivity of NA62!!!

## Conclusion

The QCD axion EFT is a powerful tool for model independent analyses

#### Careful with UV sensitive observables like $K \to \pi + a$ !

- Total event rate depends strongly on the UV cut-off  $\Lambda$  of the divergent loop process
- $\Lambda$  is not generically given by  $f_a$ !!

#### QCD axion models

Typical benchmark QCD axion models do <u>not</u> feature a large log enhancement.

More thoughts on potential issues that can arise when UV completing axion EFTs

- Building a model that does is highly non trivial and requires tuning
  - ⇒ Does every QCD axion EFT have a UV completion?

#### Look at our paper (arXiv:2101.03173) for

- Details on the new UV model
- Phenomenology of the new model in NA62 and (baby)IAXO



