

Search for keV sterile neutrinos

16th PATRAS Workshop Thibaut Houdy, Susanne Mertens 18th of June, 2021

Neutrinos oscillate \rightarrow they are massive

Standard Model (SM)

18/06/2021 16th PATRAS Workshop - Thibaut Houdy

Neutrinos oscillate \rightarrow they are massive

Neutrinos oscillate \rightarrow they are massive

How is it generated?

What is their mass?

Neutrinos oscillate \rightarrow they are massive

Mass generation \rightarrow existence of a sterile neutrino? (ex: See-Saw mechanism)

Neutrinos oscillate \rightarrow they are massive Mass generation \rightarrow existence of a sterile neutrino? (ex: See-Saw mechanism) Simple extension of the standard model (ex: vMSM¹)

1. T. Asaka, S. Blanchet and M. Shaposhnikov The nuMSM, dark matter and neutrino masses, Phys. Lett. B631:151-156 (2005)

16th PATRAS Workshop - Thibaut Houdy

Φ

Is there a sterile neutrino ?

eV-scale: Resolve anomalies in oscillation experiments

keV-scale: Dark Matter candidate

GeV-scale: See-saw candidate

18/06/2021 16th PATRAS Workshop - Thibaut Houdy

Is there a sterile neutrino ?

Dark Matter

Production mechanisms:

- > Thermal production
- Oscillation from active v via scattering (Dodelson-Widrow)
- > Enhancement via leptonnumber (Shi-Fuller)
- > Decay of heavy scalar
- > and many others...

Experimental searches

Experimental searches

Indirect searches

- Structure formations
- Radiative decay

Looking for keV x-ray signals emitted in high density DM locations via radiactive decay of sterile neutrino

→ signal at 3.5 keV observed by stacking galaxy clusters (XMM-Newton, Suzaku, Chandra), in Andromeda and Milky Way

Some results are contradictory (Hitomi)

Atomic transition is still discussed

Radiative decay of sterile neutrino

Bulbulet al1402.2301, Boyarskyet al1402.4119 Dessert et al, Science 367 (2020)

Experimental searches

Direct detection

XENON1T, XENONNT, DARWIN

Miguel D. Campos, Werner Rodejohann: Phys. Rev. D 94, 095010 (2016)

Neutrino capture on stable isotope

Dyno:

Neutrino capture on ¹⁶³Dy to produce ¹⁶³Ho. Extraction and measure of Ho/Do

Experimental searches

Production

Abdurashitov, J.N., Belesev, A.I., Chernov, V.G. et al. Jetp Lett. 105, 753–757 (2017)

Brunst T., Houdy T. et al. JINST14 P11013 (2019)

Total Energy-Momentum reconstruction

Possible source: atoms in a Magneto-Optical Trap (e.g. ²⁰³Hg, ¹³¹Cs, ⁷Be) Possible detector: Cold Target Recoil Ion Momentum Spectroscopy, COLTRIMS

Peter F Smith 2019 New J. Phys.21 053022

Total Energy-Momentum reconstruction

 $m_v^2 = [Q - E_a - E_\gamma - E_N]^2 - [p_\gamma + p_a + p_N]^2$

Possible source: atoms in a Magneto-Optical Trap (e.g. ²⁰³Hg, ¹³¹Cs, ⁷Be) Possible detector: Cold Target Recoil Ion Momentum Spectroscopy, COLTRIMS

Peter F Smith 2019 New J. Phys.21 053022

18/06/2021

Different mass sensitivities, complexity of modelling, experimental challenges

18/06/2021

- International Collaboration (150 members)
- Design sensitivity: 0.2 eV (90% CL)

KATRIN

Windowless gaseous tritium source

- molecular tritium in closed loop system
- 10¹¹ decays/s

Transport section

- magnetic guidance of electrons (@ 4 T)
- tritium flow reduction by > 10¹⁴ + tritium ion removal

keV-sterile signature in β -decay

18/06/2021 16th PATRAS Workshop - Thibaut Houdy

keV-sterile signature in β -decay

keV-sterile signature in β -decay

Stringent limit from astrophysical and cosmological observations $(\sin^2(\theta) < 10^{-7})$:

 \rightarrow Dramatic increase of the count rate (up to 3×10^8 Hz)

 \rightarrow Integral and differential phases (detector with **good resolution**)

 \rightarrow Highly **pixelised**

→ new detector is needed : the TRISTAN project

TRISTAN Project

Capability of handling high rates (> 3 x 10⁸ cps) + Excellent energy resolution (300 eV @ 20 keV)

- Silicon Drift Detector (SDD) Technology
- Novelty: large number of pixels (about 3500)
- \succ Novelty: application to high-precision β -spectroscopy

TRISTAN Project

TRISTAN : Development of a large area SDD array and read-out system to look for keV-sterile neutrino with the KATRIN experiment

18/06/2021

Staged approach

Staged approach

TRISTAN prototype

• 7-pixels with external CMOS

Prototype results

Photon response

• 130 eV (FWHM) at 6 keV

18/06/2021

- <150 eV (FWHM) for <1 us shaping time
- 0.1 % linearity over 60 keV range

Electron response

- Semi empirical model in construction
- Dead-layer measurements using e-gun (tilting the detector) and ²⁴¹Am sources

Prototype applications

2017-2019 : TRISTAN 7-pixels prototype implemented in Troitsk nu mass spectrometer → differential and integral measurements

2019-2020 : TRISTAN 7-pixels prototype implemented in KATRIN as Forward Beam Monitor. Monitoring since KNM2

Staged approach

TRISTAN module
166-pixels with integrated JFET

Design of the TRISTAN Module

g) 100-pin FPCs

f) ASIC boards

Sept 2020

d) Rigid-flex detector board

e) ASIC protective cap

Operating 166-pix SDD in UHV (10⁻⁸ mbar), cool (-80°C), intense B field (~1 T), low noise (<300 eV FWHM)

- Large SDD matrix with integrated FET
- CeSiC : carbon-fiber reinforced silicon carbide
- Rigid-flex with high density
- Dedicated ASIC
- 1-m long Kapton flex cable

a) Copper column b) CeSiC block

c) 166-pixel monolithic SDD matrix

TRISTAN Module

1st operation of a 47-pix TRISTAN SDD on Oct 2020

18/06/2021

Insertion of a 47-pix planar design \rightarrow test the full chain of acquisition

16th PATRAS Workshop - Thibaut Houdy

- Test with integrated set-up
- Homogeneous
- Stable

18/06/2021 16th PATRAS Workshop - Thibaut Houdy

18/06/2021

^{83m}Kr electrons from MoS

- •
- Monoenergetic Vacuum (10⁻⁸ mbar) •
- Operating at -50°C •

1st electron light with a 47-pix TRISTAN inside MoS KATRIN on April 2021

16th PATRAS Workshop - Thibaut Houdy

- Studying of the electron response
- Analyzing plane HV to 30 kV to focus on L32 line
- Size of the source ~ size of the detector

200

L₃₂ Rate (Hz)

Staged approach

TRISTAN Final Detector

Next milestones :

- New DAQ system
- Full model of the tritium spectrum
- First physics runs with 9 modules in the KATRIN beamline (~ 2022)

Deep Tritium Model

Deep Tritium Model

Deep Tritium Model : effects to consider

Effect can be different for differential and integral mode

- all these effects have been estimated individually
- Global model on construction

Detector

- Development of a full model for complete sensitivity studies
- 1h of nominal mass campaign
- Total countrate: 16079 cps
- Countrate in ROI: 7496 cps
- Counts : 2.3 10⁶ electrons

Conclusion

- Sterile neutrinos are a natural extension of the SM
- keV-sterile neutrinos are a viable dark matter candidate
- New ideas are being explored to search to search these particles. Exciting new measurements are coming!

KATRIN now holds the best direct limit on the neutrino mass

TRISTAN is getting ready to allow KATRIN to search for keV-sterile neutrinos

Thank you all

31/05/2021

ECHO

