

Searches for feebly interacting particles at the NA62 Experiment

Dario Soldi Istituto Nazionale di Fisica Nucleare - Torino, Italy

on Behalf of the NA62 Collaboration

16th Patras Workshop on Axions, WIMPs and WISPs

A Kaon Factory at CERN SPS

- 400 GeV/c primary proton beam
- 3 x 10¹² protons/pulse
- 40 cm beryllium target
- 75 GeV/c unseparated hadrons beam:
- 4.8 x 10¹² K+ decays/year

The NA62 strategy

Kaons with high momentum. Decay in flight technique. Signal signature: K⁺ track + π^+ track + missing energy

Main background sources:

Decay	BR	Main Rejection Tools
$K^+ o \mu^+ u_\mu(\gamma)$	63%	μ -ID + kinematics
$K^+ o \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinematics
$K^+ \to \pi^+ \pi^+ \pi^-$	6%	multi-track + kinematics
$K^+ ightarrow \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinematics
$K^+ ightarrow \pi^0 e^+ \nu_e$	5%	$e\text{-ID} + \gamma\text{-veto}$
$K^+ o \pi^0 \mu^+ u_\mu$	3%	$\mu\text{-ID} + \gamma\text{-veto}$

Key performances to deal with the backgrounds:

- O(100 ps) timing;
- O(10⁴) background suppression with kinematics;
- O(10⁷) μ-suppression;
- $O(10^7) \gamma$ -suppression;

The NA62 detector

The π^+ vv interlude

5.3 background + 7.6 SM signal events expected, 17 events observed

NA62 Run1(2016 + 2017 + 2018) result: * $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (11.0^{+4.0}_{-3.5 stat.} \pm 0.3_{syst.}) \times 10^{-11} (3.5\sigma \text{ significance})$

Number of events

The invisible feebly interacting particles at NA62

Searches for a new exotic particle X produced in Kaon decays through detecting missing mass:

- X decaying to invisible particles (neutrinos or dark matter)
- X So long-lived to escape the apparatus

1 track + missing mass: similar signature to the golden mode $K + \rightarrow \pi + vv$

OUTLINE:

- $K+ \rightarrow \pi+X, X \rightarrow invisible/visible$ with the full 2016-2018 data
- K+ $\rightarrow \pi$ + π 0 (or X with mX ~ m π 0), X/ π 0 \rightarrow invisible with 2017 data
- $K+ \rightarrow \mu+\nu X, X \rightarrow$ invisible with the full 2016-2018 data
- $K+ \rightarrow IN$ Heavy Neutral Leptons

$K^+ \rightarrow \pi^+ X$, X invisible

The scalar portal couples the dark sector to the Higgs boson via the bilinear H⁺H Motivation: feebly interacting new particle X operator of the SM. The minimal scalar portal model involves one extra singlet field S in $K^+ \rightarrow \pi^+ X$ foreseen in several models and two types of couplings, μ and λ : $\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^{\dagger} H.$ Pseudo-scalar: Axion-like particles (ALPs) PBC: J Beacham et al 2020 J. Phys. QCD axion, Axiflavon (m~0) G: Nucl. Part. Phys. 47 010501 It can lead to pair-production of S but cannot NA62: arXiv: 2103.15389 [hep-ex] hS coupling induce its decay.

same analysis of K-> π vv:

- Use exactly the same selection, normalization and background evaluation;
- Generate signal with two body decay for 200 mass hypotheses to compute acceptance and resolution in m2miss

$K^+ \rightarrow \pi^+ X$, X invisible - the Analysis

on control data

Expected $K^+ \rightarrow \pi^+ \pi^0$ in

signal regions after the

 πvv selection

- Normalization to K+ $\rightarrow \pi$ + π 0 decay •
- efficiencies evaluated with data driven methods
- Data-driven background estimation
- Analysis binned in π + momentum and beam intensity
- Control regions for validation

$K^+ \rightarrow \pi^+ X$, X invisible - the Analysis

Background model

- shape: Parameterized with polynomial functions
- both in Region1 and Region2
- Background yield from πvv analysis, including K-> πvv

Signal model

- shape: Gaussian
- Efficiency and normalization obtained in bins of momentum and intensity, as in *π*vv analysis

Update with full dataset arXiv: 2103.15389 [hep-ex] Submitted to JHEP

Looking for bumps in the mm²_{miss} distribution

$K^+ \rightarrow \pi^+ X$, X invisible - the Analysis

Assumption: X decays to invisible particles, or it is so long-lived to escape the apparatus

- Shape analysis on m2miss;
- Fully frequentist approach;
- Profiled likelihood test statistic;
- Combination of the 2016-2018 datasets;

Sensitivity degrades at small mX because of resolution. In particular, for axion models, half of the signal is cut away

$K^+ \rightarrow \pi^+ X$, X visible, but not seen

2016-2018 data

Assumption: X decays to visible Standard Model particles, but far from NA62. If it decays inside NA62, the products are supposed to be vetoed.

 $c\tau$ depends on the coupling parameters and the mass

Improved upper limit over a the range [0,100] MeV and [160,260] MeV

 $K^+ \rightarrow \pi^+ S$, S scalar

Higgs mixing model

$$\mathcal{L}_{\text{scalar}} = -\left(\mu S + \lambda S^2\right) H^{\dagger} H$$
$$\lambda = 0$$
$$\mu = \sin \theta$$

The lifetime depends on $\sin\theta$ and m_s

S decay only in standard model particles

acceptance is reduced because the decay products (e or µ) are vetoed

 $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \text{inv.}$

- Any observation \rightarrow BSM
- The previous experimental limit is 2.7 10⁻⁷ at 90% CL, from BNL experiments

$$K^+ \rightarrow \pi^+ \pi^0$$
, $\pi^0 \rightarrow \text{inv.}$ - strategy

3 7

$$BR(\pi^0 \to \text{invisible}) = BR(\pi^0 \to \gamma\gamma) \times \frac{N_s}{N_{\pi^0} \times \epsilon_{\text{sel}} \times \epsilon_{\text{trig}}}$$

The main background is $K \rightarrow \pi + \pi 0$, $\pi 0 \rightarrow \gamma \gamma$ with undetected photons

Counting experiment in the region: $25 < p_{\pi^+} < 40 \text{ GeV/c}$ and square missing mass in [0.015,0.021] GeV²/c

 $BR(\pi^0 \rightarrow invisible) \le 4.4 \times 10^{-9}$ at 90% C.L.

improvement of a factor 60 with respect to the previous experiments

$$K^+ \rightarrow \pi^+ X$$
, mX ~m_{\pi 0}

Model independent analysis for the upper limit of BR(K-> π^+X)

$K + \rightarrow \pi^+ a$, the ALP hypothesis

Pseudoscalar axion-like particle

Phys.Lett.B 816 (2021) 136259

2101.12304 [hep-ex]

 $\mathcal{L}_{\rm SM} = \frac{\partial_{\mu}a}{f_{\ell}} \sum_{\alpha} \bar{\ell_{\alpha}} \gamma_{\mu} \gamma_{5} \ell_{\alpha} + \frac{\partial_{\mu}a}{f_{q}} \sum_{\beta} \bar{q_{\beta}} \gamma_{\mu} \gamma_{5} q_{\beta}$

[J. Beacham et al., J. Phys. G 47 (2020) 010501]

$$f_q = f_\ell$$

If a decays to invisible particles, or it is so long-lived to escape the apparatus

M. J. Dolan et al., JHEP 03 (2015) 171 Used for BR and lifetime computation

If a decays to visible SM particles the acceptance is reduced because the decay products (e or μ) are vetoed

 $K^+ \rightarrow \mu^+ \nu X$, X \rightarrow invisible

A possible explanation of the **anomalous muon magnetic momentum g-2** is the existence of a new light gauge boson

S.N. Gninenko and N.V. Krasnikov, Phys.Lett.B 513 (2001) 119, https://arxiv.org/pdf/hep-ph/0102222.pdf

In a scenario with dark matter freeze out, it could be a scalar or vector mediator of an hidden sector decaying to Dark Matter $X \rightarrow \chi \chi$

 $K^+ \rightarrow \mu^+ \nu X$, with $X \rightarrow$ invisible, $\gamma \gamma$, $\mu^+ \mu^-$ Work in progress

Same final state as $K^+ \rightarrow \mu^+ N$, N: Heavy Neutral Lepton <u>One μ^+ and missing mass</u> Phys.Lett.B 816 (2021) 136259

2101.12304 [hep-ex]

 $K^+ \rightarrow \mu^+ \nu X$, X \rightarrow invisible

3 body decay \rightarrow looking for modifications of the $m_{miss}^2 = (p_K - p_\mu)^2$

Counting experiment with lower cut on m2miss optimized independently for each mass hypothesis, requiring the strongest upper limit

 $K^+ \rightarrow \mu^+ \nu X$, X \rightarrow invisible

$$N_K = \frac{N_{\rm SM}}{A_{\rm SM} \cdot \mathcal{B}(K^+ \to \mu^+ \nu)} = (1.14 \pm 0.02) \times 10^{10}$$

Tested mass hypotheses from 10 to 370 MeV

In the model with **scalar mediator**, the mean value of the m2miss is larger compared to the **vector mediator**

This results in a stronger upper limit for the scalar X model

New upper limit for the ultra-rare decay:

 $\mathcal{B}(K^+ \to \mu^+ \nu \nu \bar{\nu}) < 1.0 \times 10^{-6}$ at 90% CL

Heavy Neutral Leptons

 $K\text{+}\rightarrow\text{IN},$ with I= e or $\mu\text{:}$ two body decays looking for bumps

 $BR(P^{+} \rightarrow lN) = BR(P^{+} \rightarrow l\nu) \times \rho_{l}(m_{N}) \times |U_{l4}|^{2}$

- HNL production is enhanced kinematically wrt SM decays
- Helicity suppression relaxed in the $K \rightarrow eN$ case: factor $O(10^5)$ enhancement

Conclusions

- NA62 is a detector built to measure the very rare decay K+-> π +vv.
 - Nevertheless its characteristics and the beam intensity are such that stronger limits on feebly interacting particles are possible;
- New Limits on:
 - K+ $\rightarrow \pi$ +X, X \rightarrow invisible, in almost the full the mass range ~[0, 250] MeV
 - \circ K+ $\rightarrow \pi$ + π 0 (or X with mX ~ m π 0), X/ π 0 \rightarrow invisible
 - K+ → µ+vX , X→invisible in the mass range [10, 370] MeV
 - Heavy Neutral Leptons: new limits in electron and muon flavors
- Ongoing analyses to finalize other searches with 2016-2018 dataset
- NA62 is ready for the new data taking (Kaon beam and beam dump), starting soon (July 2021)

NA62 in Dump Mode

Beam dump mode

B and D instantaneously decay to exotic mediators and SM particles which are stopped/deviated

slide from Roberta Volpe