COMPACT STARS AS AXION LABORATORIES

BEN SAFDI

BERKELEY CENTER FOR THEORETICAL PHYSICS UNIVERSITY OF CALIFORNIA. BERKELEY
LAWRENCE BERKELEY NATIONAL LABORATORY

Axion-like particles versus QCD Axion

small

$$
10^{-10} \mathrm{eV} \quad 10^{-1} \mathrm{eV}
$$

Sring Axiverse: N pseudo-scalars -> N-1 ALPs + 1 OCD axion

Axion interactions with Matter

Axion EM coupling: $\quad \mathcal{L}=-g_{a \gamma \gamma} \frac{a F \tilde{F}}{4}=g_{a \gamma \gamma} a \mathbf{E} \cdot \mathbf{B}$

$$
g_{a \gamma \gamma}=\frac{C_{\gamma} \alpha_{\mathrm{EM}}}{2 \pi f_{a}}, \quad C_{\gamma} \sim \mathcal{O}(1)
$$

Axions fermion couplings: $\quad \mathcal{L}=\frac{C_{f}}{2 f_{a}}\left(\partial_{\mu} a\right) \bar{f} \gamma^{\mu} \gamma_{5} f$
Dimensionless coupling:

$$
g_{a f f}=\frac{C_{f} m_{f}}{f_{a}} \underbrace{\}_{\substack{\text { filavor changing } \\ \text { also possible }}}
$$

IR and/or UV contributions to $g_{a f f}$
$C_{e}^{\mathrm{IR}} \approx C_{e}^{\mathrm{UV}}+5 \times 10^{-4} C_{W}+2 \times 10^{-4} C_{B}$

Existing Constraints:

Outline

1. Axions with X -ray observations of white dwarfs and neutron stars (theory)
2. X-ray data: neutron star data (M7 anomaly)
3. X-ray data: white dwarfs data (RE J0317-853)

Outline

1. Axions with X-ray observations of white dwarfs and neutron stars (theory)
2. X-ray data: neutron star data (M7 anomaly)
3. X-ray data: white dwarfs data (RE J0317-853)

Dessert et al. 2104.12772, Dessert et al.
2008.03305 (PRL), Buschmann et al. 1910.04164
(PRL), Dessert et al. 1910.02956 (ApJ), Dessert et al.
1903.05088 (PRL)

Neutron Star Overview

Neutron Star Overview

Axions Production in Neutron Star Cores from Brem.

Axion Luminosity:

$$
L_{a} \approx 0.05 L_{\odot}\left(\frac{g_{a n n}}{10^{-10}}\right)^{2}\left(\frac{T_{c}}{10^{8} K}\right)^{6}
$$

\sim thermal spectrum at: $T_{c} \approx 10 \mathrm{keV}$ surface temperature $\sim 0.1 \mathrm{keV}$
understanding factors of T_{c}

1. double neutron degeneracy: $\left(T_{c} / p_{f}\right)^{4}\left(p_{f} \sim 0.3 \mathrm{GeV}\right)$
2. cross-section: $\sigma \sim T_{c}$
3. energy: $E_{a} \sim T_{c}$
additional complication: superfluidity (*ask after for details)

Axions Production in White Dwarf Cores from Brem.

Axion Luminosity:

$$
L_{a} \approx 2 \times 10^{-4} L_{\odot}\left(\frac{g_{a e e}}{10^{-13}}\right)^{2}\left(\frac{T_{c}}{10^{7} \mathrm{~K}}\right)^{4}
$$

\sim thermal spectrum at: $T_{c} \sim 1 \mathrm{keV}$
surface temperature \sim few eV

single electron degeneracy $\left(T_{c} / p_{f}\right)^{2}\left(p_{f} \sim 0.5 \mathrm{MeV}\right)$
(additional complication: ionic correlation effects)

- Suppressed luminosity by factor ~few
* *ask after if interested in details

Axion-Photon Conversion in Dipole Field

Strong-field QED -> Euler Heisenberg Lagrangian

$$
\mathcal{L}_{\mathrm{EH}} \supset \frac{\alpha_{\mathrm{EM}}^{2}}{90 m_{e}^{4}}\left[\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\frac{7}{4}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}\right]
$$

Axion-photon mixing:

$$
\left[\omega+\left(\begin{array}{cc}
\Delta_{\mathrm{EH}} & \Delta_{B} \\
\Delta_{B} & \Delta_{a}
\end{array}\right)-i \partial_{r}\right]\binom{A_{\|}}{a}=0
$$

$$
p_{a \rightarrow \gamma} \sim 10^{-4}\left(\frac{g_{a \gamma \gamma}}{10^{-11} \mathrm{GeV}^{-1}}\right)^{2}\left(\frac{1 \mathrm{keV}}{\omega}\right)^{4 / 5}\left(\frac{B_{0}}{10^{13} \mathrm{G}}\right)^{2 / 5}\left(\frac{R_{\mathrm{NS}}}{10 \mathrm{~km}}\right)^{6 / 5}
$$

typical NS: $\quad p_{a \rightarrow \gamma} \sim 10^{-4}\left(\frac{g_{a \gamma \gamma}}{10^{-11} \mathrm{GeV}^{-1}}\right)^{2}$
typical MWD: $\quad p_{a \rightarrow \gamma} \sim 5 \times 10^{-3}\left(\frac{g_{a \gamma \gamma}}{10^{-11} \mathrm{GeV}^{-1}}\right)^{2}$

Outline

1. Axions with X-ray observations of white dwarfs and neutron stars (theory)
2. X-ray data: neutron star data (M7 anomaly)
3. X-ray data: white dwarfs data (RE J0317-853)

Dessert et al. 2104.12772, Dessert et al.
2008.03305 (PRL), Buschmann et al. 1910.04164 (PRL), Dessert et al. 1910.02956 (ApJ), Dessert et al. 1903.05088 (PRL)

M7 hard X-ray excess

- 7 NSs between ~100-500 pc from Sun
- Discovered with ROSAT full-sky X-ray survey
- Surface: B ~ 10^{13} G (spindown)
- $\mathrm{T}_{\text {surf }} \sim 100 \mathrm{eV}$
- Non previous detection of non-thermal emission
- All old ~0.1-1 Myr and isolated

M7 hard X-ray excess

- data from ~2-8 keV
- XMM-Newton (PN and MOS)
- ~50" angular resolution
- Chandra
- ~1" angular resolution

Hard X-ray excess from RX J1856.6-3754

All M7 hard X-ray data

Outline

1. Axions with X-ray observations of white dwarfs and neutron stars (theory)
2. X-ray data: neutron star data (M7 anomaly)
3. X-ray data: white dwarfs data (RE J0317-853)

Dessert et al. 2104.12772, Dessert et al.
2008.03305 (PRL), Buschmann et al. 1910.04164 (PRL), Dessert et al. 1910.02956 (ApJ), Dessert et al.
1903.05088 (PRL)

Fast forward to New Years 2021

Chandra

Magnetic white dwarfs are ultra-clean

Energy

RE J0317-853 Facts

- "hottest" magnetic white dwarf ($\mathrm{T}_{\text {surf }} \sim 5 \mathrm{eV}$) -> high core T ~29.38 pc (Gaia parallax)
- Surface: B ~ 5x108 G (Zeeman splitting and circular pol.)
$\mathrm{T}_{\text {core }}=1.39+-0.01 \mathrm{keV}$ (dedicated cooling sequences compared to Gaia luminosity data, ask after if interested)

No previous dedicated X-ray observations

RE J0317-853 Magnetic Field

*consistent B-field from optical circular polarization
We assume $\mathrm{B}_{0}=200 \mathrm{MG}$ dipole (conservative w.r.t. more realistic models, but dependence small)

RE J0317-853 Chandra X-Ray Data

- ~ 40 ks with ACIS-I, no grating (18-12-2020)

We saw absolutely nothing! :-(

- 1-9 keV

RE J0317-853 Chandra X-Ray Data

Results in terms of axion-photon coupling

Future Searches Towards RE J0317-853

Question: Can alt. processes dominate axion rate in NSs? In progress 1. muon/proton cyclotron off of internal B-field
2. pion/kaon condensate production? quark-gluon plasma prod?

Questions?

Backup Slides

One-loop axion-photon coupling

Hard X-ray excess from RX J1856.6-3754

Chandra

- No obvious astrophysical explanation

Stellar modeling systematics

$\left|g_{a e e} g_{a \gamma \gamma}\right|<1.3 \times 10^{-25} \mathrm{GeV}^{-1}$ at 95\% C.L. (low mass)

RE J0317-853 Core Temperature/Composition
Use Gaia measured Color (BP - RP) and Magnitude (M_{G})
Compare to dedicated WD cooling sequences that predict Gaia colors/magnitudes (Camissasa et al, A\&A 2019)

- Combine with own dedicated MESA simulations for composition profiles

* consistent T_{c} base on binary

 companion age only + cooling theoryfiducial T_{c}

Gaia

Axions Production in White Dwarf Cores from Brem.

Axion Luminosity:

$$
L_{a} \approx 2 \times 10^{-4} L_{\odot}\left(\frac{g_{a e e}}{10^{-13}}\right)^{2}\left(\frac{T_{c}}{10^{7} \mathrm{~K}}\right)^{4}
$$

\sim thermal spectrum at: $T_{c} \sim 1 \mathrm{keV}$

surface temperature \sim few eV

T

single electron degeneracy $\left(T_{c} / p_{f}\right)^{2}\left(p_{f} \sim 0.5 \mathrm{MeV}\right)$
(additional complication: ionic correlation effects)
Nakagawa, Kohyama, Itoh; Raffelt (1980's)
$\frac{d \epsilon_{a}}{d \omega}=\frac{\alpha_{\text {EM }}^{2} g_{a c e}^{2}}{4 \pi^{3} m_{e}^{3}} \frac{\omega^{3}}{e^{\omega / T}-1}$

$\mathrm{erg} / \mathrm{cm}^{3} / \mathrm{s} / \mathrm{keV}$
thermal spectrum
number density atomic number

Axion-Photon Conversion in Dipole Field

Strong-field QED -> Euler Heisenberg Lagrangian

$$
\mathcal{L}_{\mathrm{EH}} \supset \frac{\alpha_{\mathrm{EM}}^{2}}{90 m_{e}^{4}}\left[\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+\frac{7}{4}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2}\right]
$$

Axion-photon mixing:

$$
\left[\omega+\left(\begin{array}{cc}
\Delta_{\mathrm{EH}} & \Delta_{B} \\
\Delta_{B} & \Delta_{a}
\end{array}\right)-i \partial_{r}\right]\binom{A_{\|}}{a}=0
$$

$$
\begin{aligned}
\Delta_{\mathrm{EH}} & \sim \omega\left(\frac{B}{B_{C}}\right)^{2} \quad\left(B_{c}=\frac{m_{e}^{2}}{e} \sim 4 \times 10^{13} m \mathrm{G}\right) \\
\Delta_{a} & \sim \frac{m_{a}^{2}}{\omega} \\
p_{a \rightarrow \gamma} & \sim 10^{-4}\left(\frac{g_{a \gamma \gamma}}{10^{-11} \mathrm{GeV}^{-1}}\right)^{2}\left(\frac{1 \mathrm{keV}}{\omega}\right)^{4 / 5}\left(\frac{B_{0}}{10^{13} \mathrm{G}}\right)^{2 / 5}\left(\frac{R_{\mathrm{NS}}}{10 \mathrm{~km}}\right)^{6 / 5}
\end{aligned}
$$

RE J0317-853 Core Temperature/Composition

- MESA: start with ~ 10 Msun star before WD phase
- end up with oxygen-neon core because carbon depletion (standard expectation for ~1.2-1.3 Msun WD)

$$
\frac{d \epsilon_{a}}{d \omega}=\frac{\alpha_{\mathrm{EM}}^{2} g_{a e e}^{2}}{4 \pi^{3} m_{e}^{3}} \frac{\omega^{3}}{e^{\omega / T}-1} \sum_{s} Z_{s}^{2} n_{s} F_{s}
$$

NS X-ray Backup

Core temperature / surface temperature relation
(large uncertainties here)

Core temperatures based off of kinematic ages

