Dark Matter Search Results from DAMIC at SNOLAB

On behalf of the DAMIC Collaboration

Núria Castelló-Mor
Instituto de Física de Cantabria
DM framework for DAMIC

Cosmological evidence of dark matter

- Galaxy rotation curves
- Galaxy formation
- Gravitational lensing
- CMB Power Spectrum

Aim to measure interactions with matter

- **Elastic scattering off nuclei**
 standard WIMP scenario
 1-1000 GeV c\(^{-1}\)
 0.3-300 keV recoil energy

- **Inelastic scattering off electrons**
 dark sector coupling
 1-1000 MeV c\(^{-1}\)
 1-100 eV recoil energy
Overview

1. Brief introduction on CCDs as Direct Dark Matter detectors
2. DAMIC at SNOLAB Overview
3. Latest result of DAMIC@SNOLAB on WIMPs
4. Future developments
 DAMIC-M the new generation of CCD detectors
DAMIC Collaboration

17 June, 2021, Patras Workshop

Núria Castelló-Mor (IFCA)
e-mail: nuria.castello.mor@cern.ch
Charge Coupled Devices (CCDs) as PARTICLE DETECTORS

DAMIC 4000x4000 pixels (15x15 μm²)

DAMIC 6000x1000 pixels (15x15 μm²)
CCDs as Dark Matter Detectors

Charge Generation and Collection

- A particle can strike a silicon nucleus in the detector
- This recoiling nucleus/electron may produce some number of e-h pairs in the fully depleted region (~675μm)
- The holes are drifted upwards in an electric field and collected in a pixel array
- The 3-phase structure forms potential wells confining the charge in the pixels for very long periods of time without any loss
CCDs as Dark Matter Detectors

Charge Generation

Charge Transfer

- Shifting up/down these potential wells, charges are moved pixel to pixel, with very high efficiency, until they reach the serial register at the end of the CCD, and transferred into the readout amplifier.
CCDs as Dark Matter Detectors

Charge Generation

Charge Collection and Transfer

Charge Measurement

- In standard CCDs, the charge measured is done by **Correlated Double Sampling**: read first the reference voltage (pedestal) and then the signal, the integration time allows us to reduce the high frequency noise, but not the low frequency noise (see skipper at the end of this talk).

- Ultra low leakage/dark current 5×10^{-22} A/cm2

- Readout can be slow/non-destructive: low noise (few e-)

\[
\sigma = 5.9 \text{ eV} = 1.6 \text{ e-}
\]
CCDs as Dark Matter Detectors. Charge Diffusion

- β particle
- X-ray
- Cosmic muon

Diagram showing energy measured by pixel in keV, with energy range from 5 to 30 keV.
DArk Matter In CCDs
DAMIC
DAMIC at SNOLAB

- Located at SNOLAB (~6000 M.W.E) in Sudbury, Ontario
- Array of 7 CCDs (6gr, 16 Megapixels) cooled to ~140K
 - Low Noise (<2e-)
 - Extremely low leakage current: $2 \times 10^{-22} \text{ Acm}^{-2}$
- 50 eV$_{ee}$ analysis threshold (10% reconstruction efficiency)
- Total background rate of 10 cts/kg/day/keV$_{ee}$
- 10.6 kg day exposure of Si target for final WIMP analysis
DAMIC. Calibration and Energy Resolution

Energy calibration using O, Alm Si, Cr, Mn, and Fe X-ray lines

CCD linearity down to 40eV with optical photons
CCDs as Dark Matter Detectors. Charge Diffusion

Thermal diffusion causes charge to spread out as it drifts. Muons give an excellent calibration for the depth-dependence of sigma
DAMIC. Main Results
DAMIC at SNOLAB: Data Acquisition
DAMIC at SNOLAB. Main Results

Calibrations

- Compton Scattering [arXiv:1706.06053]

Gammas

![Fig. 1: Compton Scattering](image1.png)

![Fig. 2: Ionization Efficiency](image2.png)
DAMIC. Main Results

Calibrations

- Compton Scattering [arXiv:1706.06053]

Backgrounds

- Radioactive Backgrounds Study [arXiv:1506.02562]
- Full Radioactive Background Model [... in preparation]

Dark Matter Results

- Hidden Photon Limits [arXiv:1611.03066]
DAMIC. Existing results

- DAMIC at SNOLAB
- protoSENSeI at MINOS
- CDMSHoV
- XENON10

$F_{DM}(q) = 1$

$F_{DM}(q) \propto q^{-1}$

$F_{DM}(q) \propto q^{-2}$

$$\frac{dR}{dE_e} \propto \bar{\sigma}_e \int \frac{dq}{q^2} \eta(m_X, q, E_e) |F_{DM}(q)|^2 |f_c(q, E_e)|^2$$
DAMIC. The latest results on WIMP Search

Results on low-mass weakly interacting massive particles from a 11 kg d target exposure of DAMIC at SNOLAB

A. Aguilar-Arevalo,1 D. Amendt,2 D. Baxter,3 G. Canero,4 B.A. Cervantes Vergara,1 A.E. Chavarría,5 J.C. D’Olive,4 J. Estrada,4 F. Favela-Perez,4 R. Galor,6 Y. Guardincerri,4,* E.W. Hoppe,7
T.W. Hossbach,7 B. Klumpp,7 J. Lawson,8 S.J. Lee,8 A. Letessier-Selvon,8 A. Matulun,3,6 P. Mitra,3 C.T. Ovrum,1 A. Pierr,1 P. Privitera,3,6 K. Bananthan,1 J. Da Rocha,5 Y. Sarkis,2 M. Settimo,10 R. Smida,3 R. Thomas,3 J. Tiffenberg,3 M. Traina,6 R. Vilar,11 and A.L. Virto1

(DAMIC Collaboration)

2020 PhRvL 125x1803A
DAMIC. Existing results

Calibrations

- Compton Scattering [arXiv:1706.06053]
- Nuclear Recoil Ionization Efficiency [arXiv:1608.00953]

Backgrounds

- Radioactive Backgrounds Study [arXiv:1506.02562]
- Full Radioactive Background Model [... in preparation]

Dark Matter Results

- Hidden Photon Limits [arXiv:1611.03066]
1. 7 CCDs (40 g target mass) collected 11 kg-day of data over > 1 year
2. We **build a background model**
3. We compare the observed spectrum events with our modeled background
4. **THE EXCESS.** We measured an excess of 17.1±7.6 events above background model
DAMIC. Background Model Methodology

1. Categorize detector backgrounds (ER: γ/β)
 ○ Assumption: neutron, muon, alpha → induced backgrounds are subdominant

2. Simulate full detector
 ○ Assumption: GEANT4 accurately simulates relevant decays down to threshold

3. Choose an energy region of interest (0.05-6 keV$_{ee}$)
 ○ Threshold: below 0.05 keV$_{ee}$ our reconstruction efficiency is <10%
 ○ Maximum: above 6 keV$_{ee}$ mostly sensitive to heavier DM ($M_{\chi}>10$ GeV)

4. Set aside some amount of data as a check (Ext 1)
 ○ Ext1 is sandwiched between two ancient lead bricks and has $\frac{1}{2}$ the background

5. Perform a fit against data (assuming Poisson stats)
 ○ Assumption: no DM sensitivity in this mass range
 ○ Maximum endpoint ~20 keV$_{ee}$ to include full tritium spectrum

6. Assemble weighted templated and extrapolate down to low energy to use in WIMP search
DAMIC. Background Model - Fit Results

CCD 2-7
2D template fit in E-σ_x space

CCD 1. Not a fit!
Based on CCD 2-7 result
DAMIC. Partial Charge collection (PCC)

- CCD has a backside contact (gettering layer or ISDP), that contains Phosphorus (P) which diffuses a microns into the CCD bulk (green,dashed line)
 - Ionization charge will recombines with P → not all created charges will be recollected
 → Partial Charge collection
DAMIC. Partial Charge collection (PCC)

- PCC causes spectral distortion for decays on CCD backside
 - Due to long exposure time on surface, DAMIC CCDs have a substantial amount of ^{210}Pb on the back side, being the PCC very important in our analysis
 - This distortion has been parametrized from simulation and included it as FREE component in our fit to DM search region

\[f(E) = N \exp(-\sqrt{E}/\alpha) \]
DAMIC. WIMP Likelihood Search @ Low Energy

Final Fit:
- Best background model
- Backside PCC spectral correction
- Exponential bulk signal

Main Result:
- Below 200eV_{ee}, there is an excess of ~ 17 events: well described by a spatial bulk component with an exponential energy profile (this form is the first order approximation for the most general DM models)

$$f_s(E|\epsilon) = \frac{1}{\epsilon} \exp(-E/\epsilon)$$
DAMIC. The Excess

\[f_s(E|\epsilon) = \frac{1}{\epsilon} \exp\left(-\frac{E}{\epsilon}\right) \]

Potential source of excess
- Missing component in the background model
- Detector effect on the front side of the CCD
- Silicon new physics
- ...

17 June, 2021, Patras Workshop

Núria Castelló-Mor (IFCA)
e-mail: nuria.castello.mor@cern.ch
We report a limit on WIMP - nucleon Si interaction

Significant fraction of the CDMS Si excluded
DAMIC-M
Dark Matter In CCDs at Modane
Future: the next generation DAMIC-M

From DAMIC we know that
- CCDs are an innovative DM detector
- They have a very competitive low leakage current

But we can improve but just using Skipper CCDs

DAMIC-M
- 500 grams (10 times bigger)
- Redesigned to achieve 50 times reduction in background 5dru → 0.1 dru
- Using skipper CCD technology demonstrated in SENSEI
- Moving from SNOLAB to Modane (LSM) in France
- Approved, funded, prototype undergoing

SENSITIVE to nuclear recoils, electron recoils, photon absorption from hidden photon
DAMIC-M: skipper CCDs \rightarrow single electron resolution

Tiffenberg, Javier, et al. PRL 119(13): 131802
Lowering the noise: skipper CCDs

Main difference: the skipper CCD allows multiple sampling of the sample pixel without corrupting the charge packet. The final pixel value is the average of the samples:

Idea proposed in 1990 by Janesick et al. (doi:10.1117/12.19452)
LBC (Low Background Chamber) the first phase of DAMIC-M

- A low-background chamber (bkg level a few dru) is in preparation
- Main objectives
 - Characterization of DAMIC-M CCDs in low-bkg environment: dark current, 32Si rate, 210Pb surface background, CCD packaging
 - First science results with a few CCDs
- Almost ready to send all components to Modane
- **Starting to take data … end of this year!**
DAMIC-M. DM searches

WIMP nuclear recoil search

Hidden photon search

Núria Castelló-Mor (IFCA)
DAMIC-M. DM searches: DM-electron cross-sections

Heavy mediator >> keV

Light mediator << keV

F_{DM} = 1

F_{DM} \propto 1/q^2
Summary

DAMIC-M is a new experiment at Modane (LSM)

- Sensitive to predicted cross-sections for several hidden photon DM candidates over 10 orders of magnitude in mass

- Status
 - 2019-2021: R&D & prototype
 - 2021: Low-background chamber tests
 - 2022: Construction
 - 2023: Commissioning

Future looks bright or perhaps if we are lucky dark!
Extra slides
DAMIC. Nuclear Recoil Calibrations

low E neutrons

a) Cross-section of setup
- He counter
- Vacuum chamber
- CCD
- Table
- Source
- Lead shielding

b) 136Xe source detail
- BeO part A
- BeO part B
- BeO part C
- Activated annular rod

Number of events:

- $Cr K_{\alpha}$
- $Mn K_{\alpha}$
- $Fe K_{\alpha}$
- $Fe K_{\beta}$

Number of events:

- Al target (observed)
- Al target (corrected)
- BeO target (observed)
- BeO target (corrected)

Diagrams showing the relationship between $E_r [keV]$ and $E_e [keV]$.

- Dougherty (1992)
- Gerober et al. (1995)
- Zecher et al. (1999)
- 136Xe source (2016)
- Antonella (2017)
- Lindhard, $k=0.15$
Mitigating radioimpurities in Silicon

Cosmogenic activation:
- Tritium: half-life 12.5 years
- Uranium chain
- One particularly bad one is ^{32}Si
 - Half-life of 133 years
 - Silicon gathered at sea level - so affects all known silicon boules
- DAMIC has unique method for measuring impurities in silicon CCDs
Mitigating radioimpurities in Silicon Shipping detector components

- The detector and all shielding components can get activated by hadronic components of cosmic rays at any point on the way to its underground home.
Mitigating radioimpurities in Silicon DAMIC measurement of cosmogenic ^{32}Si

- Search for sequences of βs starting in the same pixel of the CCD in different images

- New paper being reviewed with reduced uncertainties
- DAMIC unique spatial resolution and excellent duty cycle allows to reject this background (also other beta-beta sequences, as ^{210}Pb)

$^{32}\text{Si} = 80^{+110}_{-65} \text{ kg}^{-1} \text{ d}^{-1} \ (95\% \ CI)$

2015 JINST 10 P08014 1506.02562
CCDs: Unique spatial resolution

Three alpha at the same pixel location!

![Heatmaps of different energy levels](image1)

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Time Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>17.8 days</td>
</tr>
<tr>
<td>6.8</td>
<td>5.5 hours</td>
</tr>
<tr>
<td>8.8</td>
<td></td>
</tr>
</tbody>
</table>

We set in situ limits on contamination:

- 238U < 5 kg$^{-1}$ d$^{-1}$ = 4 ppt
- 232Th < 15 kg$^{-1}$ d$^{-1}$ = 43 ppt

[2015 JINST 10 P08014]
DAMIC. X-ray Calibration of CCDs

Linear response, good resolution!

E resolution 53 eV at 5.9 keV
DAMIC. Background Model - Uncertainties

Phosphorus concentration
The full charge collection in our CCDs starts at 10 microns inside the active region → **non-negligible partial charge collection region**! (CCDs where in surface for a long period of time which lead to a substantial amount of ^{210}Pb)

PCC model: the spectrum essentially to first order only depends on where this endpoint is located. This dependency can be parametrized with an exponential

$$f(E) = N \exp\left(-\sqrt{E}/\alpha\right)$$