Update from the XENON dark matter project OBSERVATION OF EXCESS ELECTRONIC-RECOIL EVENTS IN XENON1T PRD 102, 072004 (2020)

PATRAS WORKSHOP 16th June 2021 ADAM BROWN adam.brown@physik.uni-freiburg.de On behalf of: XENON Collaboration

Laboratori Nazionali del Gran Sasso Italy

Laboratori Nazionali del Gran Sasso Italy

The TPC

2 t Liquid xenon in TPC3.2 t in total

248 PMTs

Particle

Nuclear recoil searches

What about the electronic recoils?

Adam Brown | adam.brown@physik.uni-freiburg.de

This talk

Search for excess above known BGs

Nature 568, 532 (2019) — Double electron capture ¹²⁴Xe

Electron capture Neutrino emission

This talk: low energies (up to 10 keV)

Background modelling

 10^{4}

 10^{3}

10²

 10^{1}

 10^{0}

10-1

·keV)

ents,

[T]

Background sources modelled with Geant4

Most rates constrained by other measurements or time dependence

Search for excess over known backgrounds between 1 and 210 keV

Efficiency and energy reconstruction

Mistake in energy reconstruction? Mis-modelled efficiency?

Look at Rn-220 calibration data

Beta-decay just like dominant background

p-value 0.58

IT COULD BE A NEW BACKGROUND

_

Tritium

3.2σ over background (159 ± 51) ev/keV/t/yr < 3 atoms ³H / kg Xe

Beta decay

Q value 18.6 keV

Half life 12.3 years

Where from?

Emanation from detector materials neither confirmed nor ruled out

11

Tritium — possible origins

Adam Brown | adam.brown@physik.uni-freiburg.de

 -10^{-19} /mol] **–**10^{–21} mol/ **'**10⁻²³ 10^{-25}

Where from?

Cosmogenic activation?

Xe spallation 31.58/kg/d at sea level (Zhang et al., Astropart. Phys 84, 62 (2016)

Seems unlikely

Tritium — possible origins

Emanation from detector materials?

Atmospheric abundance (5–10)×10⁻¹⁸ HTO/H₂O

Best fit \implies 60–120 ppb H₂O+H₂

Can neither confirm nor rule out tritium

All other significances reported both with and without tritium in BG mode

Adam Brown | adam.brown@physik.uni-freiburg.de

HTO Light yield \implies O(1) ppb H₂O

HT **Electron lifetime (xenon purity)** \implies < ppb O₂-equivalent impurities

Argon-37

2.8 keV energy released after EC

X-rays / Auger electrons

Tested as calibration source

Adam Brown | adam.brown@physik.uni-freiburg.de

Always present? No, removed by distillation Air leak? Would also introduce Kr

Ruled out

14

COULD IT BE **NEW PHYSICS?**

Bosonic dark matter

Search for a mono-energetic peak

Could be dark matter,

e.g. axion-like particle or dark photon

Most significant at 2.3 ± 0.2 keV

No > 3σ excess \implies only report limits

Mono-energetic peak: 3.0 over background (global)

Neutrino magnetic moment

with ³H: 0.9σ over background + ³H

- μ_{ν} : (1.4 2.9) × 10⁻¹¹ $\mu_{\rm B}$
- $\gtrsim 10^{-15} \mu_{\rm B} \Longrightarrow$ Majorana neutrinos

Compatible with other experiments In tension with astrophysical constraints arXiv 1910.10568, 1907.00115

Solar axions

In tension with astrophysical constraints e.g. from stellar cooling

(arXiv 1708.02111)

Solar axions only: 3.4σ over background Axions + ³H: 2.0σ over background + ³H

XENONNT

Some of what's new in XENONnT

 \implies Lower BG

Neutron veto

- Separated region of existing muon veto
- 120 additional PMTs
- Gd in the water tank
- 0.5 % Gd₂(SO₄)₃

222Rn distillation

 Reduce Rn (²¹⁴Pb) from pipes, cables, cryogenic system

• New

 \Longrightarrow Lower BG

Adam Brown | adam.brown@physik.uni-freiburg.de

Larger TPC

- Total 8.4 t LXe
- 5.9 t in TPC
- ~ 4 t fiducial
- 248 → 494 PMTs

⇒Higher exposure
and lower BG

Liquid XC purification

- Faster xenon cleaning
- 5 L/min LXe
 (2500 slpm)
- XENON1T ~ 100 slpm

 \implies Better resolution

Lower thresholds

XENOnT — watch this space

Excellent xenon purity achieved

Adam Brown | adam.brown@physik.uni-freiburg.de

12

XENOnT — watch this space

THANK YOU FOR LISTENING

xe-pr@lngs.infn.it www.xenonexperiment.org twitter.com/XENONexperiment facebook.com/XENONexperiment instagram.com/xenon_experiment