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A distinction with popular models for WIMP DM is that their sufficient production does not require
messenger particles, and their cosmological stability is a consequence of very small masses and couplings.



But what if these light particles do interact with the SM through a messenger?



Coupling axion-hidden photon

There have been several works elaborating on the idea of coupling between axions and hidden photons (among others):
Alleviate puzzling observations such as 3.5 keV line (Jaeckel14), Xenon1T (Aprile20), Cosmic IR background (Kalashev19).

Axion dark matter to convert into HP dark matter (Takahashi18, Agrawal18, Co19, Agrawal20).

The coupling of QCD axion with a HP does not spoil the solution to the strong CP problem (Kaneta et al. 17).

* The golden precision era we are entering encourages to look for more involved particle
physics models. They can be constrained!

 The search for new models can be done parasitically to existing ones.
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DM condensate

permeates a hidden oscillating electric field.
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We introduce a Z> symmetry in the VR
hidden sector that forbids X4 pv
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Our model

Thus, we end up with:

1 o1 omZ, 1
L=—FuF" — JF F" + —LA AV + 20,60

We consider the HP-DM condensate as a background field: sz — E(/) Cos(mfy’t)édm

And study the evolution of photons and axions in this background:

(8? — Vz) A = _gqb'y'y’vqj) X Eiim
(8752 — V2 -+ mi) gb — _gqb”y’y’ EZZm y :B7



Phenomenologically interesting processes

Photon-HP annihilation

CMB distortion bounds, LSW

(Stimulated) HP decay

Stability, CMB distortion, LSW

(Stimulated) Photon decay

Stellar, helioscope, X-ray, LSW
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LSW-type experiments
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With huge occupation numbers in HP condensate, it is also possible to have a spontaneous Bose enhanced decay.
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Stability of the DM condensate
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Stability of the DM condensate
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Stability of the DM condensate

Spontaneous decay
Stimulated decay

/
VYt
(k) =ml) —w—wy =
ky +k =~

e~ F/2 1 41 (0) (cosh(skt)

eie(k)t/Q

_¢T_k(()) (Cosh(skt)

(k)

+ 1 —— Sinh(skt)

28k

— z@ Sinh(skt)> + ayx (0)

QSk

10

0
0

) + ng_k(O)% sinh(skt)-
Sk |

Oy
Sk

— sinh(skt) | .

sic = /9% — (k) /4




Stability of the DM condensate
ry/ — Y -+ ¢ Spontaneous decay

Stimulated decay
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As far as sk > 0 the system features a parametrically enhanced production of axions and photons in the final state.
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Stability of the DM condensate
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Stability of the DM condensate
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Stability of the DM condensate
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Stability of the DM condensate
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Stability of the DM condensate
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Stability of the DM condensate
ry/ — Y -+ ¢ Spontaneous decay

Stimulated decay
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HP-DM Stability
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Bounds from CMB distortion

stimulated HP decay from CMB photons

”Y/ — ¢ Y satisfying
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We compute the spectral photon energy density and its corrections, to obtain the distortion of the CMB spectrum as

3
to ~ 14 x 10%r T om0 8 oyl

Xw ~ (1077 = 1)

Using the accuracy of FIRAS 0, < 1074

13



CMB Constraints
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Stellar constraints

Energy loss arguments have been widely invoked to study novel particles. A new energy loss channel will perturb the stellar
object, enforcing it to become more compact, luminous and hotter than the unperturbed configuration

The vertex in our model allows for the decay of a transverse plasmon into a hidden-photon and an axion in a plasma.

We start looking the anomalous solar luminosity produced by this process, using that L, < 0.1L5t
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Horizontal Branch stars are denser and hotter than the sun, so improved limits are expected.
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Stellar constraints
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Constrained parameter space

Summary
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Constrained parameter space

Summary
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Outlook

 We studied a model of very light dark matter particles (HPs) interacting only
under the inclusion of an additional light “messenger” with the Standard
Model (the ALP).

 For ALP masses higher than the HP, the DM Is stable.

 For HP heavier than ALPs, the decay of DM can exhibit parametric resonance,
constraining the parameter space where the HP can be the DM.

 Best bounds from astrophysical observations.

* Direct detection becomes harder, but still possible. A different tune of the
detectors could help to distinguish between different physical models.
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Coherence of DM

The coherence length of the DM goes by the inverse width in momentum space of the hidden photon distribution

1
Leon ~ and Ak.on = M Av
Y
A']'Ccoh

During early times we 5~ & N 10—4 1

use linear perturbation Akcoh ~ \/Hm7’5° p/p <

theory to obtain

k

No longer applicable during matter M Ak kQPlin(ka Z) ~ 1
domination. Fluctuations start to grow 0~ 1 0 )2 '

and become non-linear

we estimate the scales are linear for 2 Z 75
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Several observations and experiments constrain their parameter space
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