Dark Matter Scattering in Optomechanical Experiments

Martin Spinrath National Tsing Hua University, Hsinchu, Taiwan

16th PATRAS Workshop on Axions, WIMPs and WISPs

Mostly based on collaborations with C. Ting, R. Primulando [arXiv:1906.07356] and C.-H. Lee, C. S. Nugroho [arXiv:2007.07908]

- Introduction
- Particle Physics Approach
- Gravitational Wave Astronomy Approach
- Summary and Conclusions

- Introduction
- Particle Physics Approach
- Gravitational Wave Astronomy Approach
- Summary and Conclusions

WIMP Searches

Gravitational Wave Detectors

Gravitational Wave Detectors

- Decade long R&D efforts
- Impressive sensitivities
- Impressive results
- Nobelprize 2017
- Other uses for this technology?

(Similar motivation to the talks from Jun'ya Kume, Sander Vermeulen and Doris Todorović)

- Introduction
- Particle Physics Approach
- Gravitational Wave Astronomy Approach
- Summary and Conclusions

Dark Brownian Motion

[Cheng, Primulando, MS '19]

- Any target mass in a bath of DM
- DM scatterings induce Brownian Motion
- Measure the position of a light target mass with high precision
- Look for time-dependent asymmetries

Potential Setup

Inspired by [Valerie Domcke and Martin Spinrath, 2017]

The Asymmetry Factor

The Asymmetry Factor :

$$A = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = p_{+} - p_{-}$$

Uncertainty of A :

$$\sigma_A = \frac{2}{\sqrt{N}} \sqrt{p_+ p_-}$$

 A, p_{\pm} are independent of DM mass

Dark Matter Induced Brownian Motion

Backgrounds

- Many potential backgrounds for our proposal
 - seismic noise, nearby traffic, radioactivity, etc.
- In the paper we discuss two examples
 - Neutrinos (negligible O(10⁻¹⁴) events per sec)
 - Hits from residual gas (after momentum cutoff O(10-9) events per sec)

Martin Spinrath (NTHU) 17/06/21 - Patras Workshop

DM Scattering in Optomechanical Experiments

- Introduction
- Particle Physics Approach
- Gravitational Wave Astronomy Approach
- Summary and Conclusions

Toy Model: Damped Harmonic Oscillator

• We want to study a simple toy model first

$$m \ddot{x}_c + k_c \left(1 + \mathrm{i} \,\phi\right) x_c = \frac{F_{\mathrm{ext},c}}{L}$$

• The experimental output [Moore, Cole, Berry '14]

$$x_{\text{tot},c}(t) = x_{\text{th},c}(t) + x_{\text{qu},c}(t) + x_{\text{DM},c}(t)$$

Suspension Thermal Noise Quantum Noise

Noise

DM Signal

• We neglect here some noise components

Signal-to-Noise Ratio

[Lee, Nugroho, MS '20; Moore, Cole, Berry '14]

• The optimal SNR is given by

$$\rho^{2} = \int_{f_{\min}}^{f_{\max}} \mathrm{d}f \frac{4 \, |\tilde{x}_{\mathrm{DM}}(2 \, \pi \, f)|^{2}}{S_{n}(2 \, \pi \, f)}$$

50 AV 198 B

Near the peak (FWHM) neglect quantum noise

$$\varrho_{\rm th}^2 = \frac{1}{2\pi} \frac{q_R^2}{m \, k_B \, T} = \frac{1}{2\pi} \frac{E_R}{E_{\rm th}} = \frac{4.09 \times 10^{-24}}{10^{-24}}$$

• Need light, cold targets!

DM Signal at KAGRA

[Lee, Nugroho, MS '20]

Current Reality

- Optically levitated mass
- Target mass 1 ng
- Temperature 200 μK
- Several days exposure
- Experimental threshold 0.15 GeV

Lots of R&D

Physical device	Mass	Frequency	Temp.	Quantum limit	Sensitivity, e.g. acceleration, strain, force	
Resonant acoustic wave:						
BAW/Weber bar [41]	1000 kg	1 kHz	4 K		$h_s \sim 10^{-21} / \sqrt{\text{Hz}}$	
HBAR/phonon counting [76]	50 µg	10 GHz	10 mK	single phonon	$ \begin{aligned} \sigma_E &\sim 30 \; \mu \text{eV} \\ h_s &\sim 10^{-15} / \sqrt{\text{Hz}} \\ (h_s &\sim 10^{-9} / \sqrt{\text{Hz}} \text{broadbandbelowres}) \end{aligned} $	
superfluid helium cavities [52]	1 ng	300 MHz	50 mK	single phonon	$\sigma_E \sim 1 \ \mu \mathrm{eV}$	
Resonant and below-resonance of	detectors:					
cantilever optomechanical ac- celerometer [77]	25 mg	10 kHz	300 K		$ \begin{array}{l} \sqrt{S_a} \sim 3 \times 10^{-9} \ \mathrm{g}/\sqrt{\mathrm{Hz}} \\ (\sqrt{S_a} \sim 10^{-7} \ \mathrm{g}/\sqrt{\mathrm{Hz}} \ \mathrm{broadband \ below \ res}) \end{array} $	White paper: "Mechanical Quantum Sensing
SiN-suspended test mass ac- celerometer [78, 79]	10 mg	10 kHz	300 K			
membrane optomechanics [80– 86]	10 ng	1.5 MHz	100 mK	at SQL	$\frac{\sqrt{S_a} \sim 10^{-7} \text{g}/\sqrt{\text{Hz}}}{\sqrt{S_f} \sim 10^{-17} \text{ N}/\sqrt{\text{Hz}}}$	
crystalline cantilever for force sensing [87]	0.2 ng	1 kHz	200 mK		$\frac{\sqrt{S_a} \sim 3 \times 10^{-7} \text{g}/\sqrt{\text{Hz}}}{\sqrt{S_f} \sim 10^{-18} \text{ N}/\sqrt{\text{Hz}}}$	in the Search for Dark Matter"
Pendula above resonance:						In the Search for Dark Matter
LIGO mirror [88]	10 kg	10 Hz – 10 kHz	300 K	SN limited above 100 Hz	$\frac{\sqrt{S_a} \sim 4 \times 10^{-15} \text{ g/}\sqrt{\text{Hz}} \text{ at } 100 \text{ Hz}}{\sqrt{S_x} \sim 10^{-19} \text{ m/}\sqrt{\text{Hz}}}$	[arXiv:2008.06074]
suspended mg mirror [89–91]	1 mg	$1-10 \mathrm{~kHz}$	300 K	factor of 20 in displacement from (off-resonant) SQL	$\frac{\sqrt{S_a}}{\sqrt{S_x}} \sim 7 \times 10^{-11} \text{ g}/\sqrt{\text{Hz}} \text{ at } 600 \text{ Hz}$ $\sqrt{S_x} \sim 5 \times 10^{-17} \text{ m}/\sqrt{\text{Hz}}$	
crystalline cantilever [92]	50 ng	10 – 100 kHz	300 K	at (off-resonant) SQL	$\frac{\sqrt{S_a} \sim 2 \times 10^{-7} \text{ g}/\sqrt{\text{Hz}} \text{ at } 20 \text{ kHz}}{\sqrt{S_x} \sim 10^{-16} \text{ m}/\sqrt{\text{Hz}}}$	
Levitated and free-fall systems:						9
LISA pathfinder [93]	15 kg	$1 - 30 \mathrm{~mHz}$	300 K		$\sqrt{S_a} \sim 10^{-15} \text{ g}/\sqrt{\text{Hz}}$	
mm magnetically-levitated sphere [94]	4 mg	20 Hz	5 K		$\frac{\sqrt{S_a} \sim 2 \times 10^{-7} \text{ g/}\sqrt{\text{Hz}}}{\sqrt{S_f} \sim 8 \times 10^{-12} \text{ N/}\sqrt{\text{Hz}}}$	
sub-mm magnetically-levitated sphere [95]	0.25 μg	1–20 Hz	$\begin{array}{ll} {\rm laser} & {\rm cool} \\ {\rm to} < 9 \ {\rm K} \end{array}$		$\frac{\sqrt{S_a} \sim 10^{-7} \text{ g/}\sqrt{\text{Hz}}}{\sqrt{S_f} \sim 2 \times 10^{-16} \text{ N/}\sqrt{\text{Hz}}}$	
optically trapped microsphere [96]	1 ng	10 – 100 Hz	laser cool to 50 μ K	factor of 100 in displacement from (off-resonant) SQL	$\frac{\sqrt{S_a} \sim 10^{-7} \text{ g/}\sqrt{\text{Hz}}}{\sqrt{S_f} \sim 10^{-18} \text{ N/}\sqrt{\text{Hz}}}$	
optically trapped nanosphere [97, 98] (rotational [99])	3 fg	300 kHz	laser cool to 12 μ K	ground state	$\frac{\sqrt{S_a} \sim 7 \times 10^{-4} \text{ g/}\sqrt{\text{Hz}}}{\sqrt{S_f} \sim 2 \times 10^{-20} \text{ N/}\sqrt{\text{Hz}}} \\ \sqrt{S_\tau} \sim 10^{-27} \text{ Nm/}\sqrt{\text{Hz}}}$	
trapped ion crystal [18]	10^{-6} fg	1 MHz			$\frac{\sqrt{S_a} \sim 50 \text{ g/}\sqrt{\text{Hz}}}{\sqrt{S_f} \sim 4 \times 10^{-22} \text{ N/}\sqrt{\text{Hz}}}$	

TABLE I. Examples of currently-available mechanical sensors. Sensitivities for continuous sensing are represented by the relevant noise power spectral densities (e.g. S_a is the acceleration noise power), or threshold (σ_E is the single-phonon detection threshold). Here we summarize solid-state mechanical detectors, although atom interferometers can be characterized by similar metrics.

- Introduction
- Particle Physics Approach
- Gravitational Wave Astronomy Approach
- Summary and Conclusions

Summary and Conclusions

- Gravitational Wave Astronomy has just begun
- Impressive new technologies
- Can we use them to find DM?
 - Maybe.
- We need more research

A bit of Advertisement

The Future is DARK Workshop

29th of June - 1st of July

Free registration

- Neutrinos
- Dark Matter
- Gravitational Waves

DM Scattering in Optomechanical Experiments

22