The spectral lineshape of gradient-coupled bosonic dark matter in our galaxy

Arne Wickenbrock, Alexander Gramolin et al. for the CASPEr collaboration

PATRAS conference, 18.06.2021

Acknowledgements

Arian Dogan

SIMONS FOUNDATION

Why is the lineshape relevant?

Improving limits by optimally filtering the power spectrum data in SHAFT

HIM

CASPEr Boston result

Talk by Deniz Aybas (Thursday)

Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance

Deniz Aybas, Janos Adam, Emmy Blumenthal, Alexander V. Gramolin, Dorian Johnson, Annalies Kleyheeg, Samer Afach, John W. Blanchard, Gary P. Centers, Antoine Garcon, Martin Engler, Nataniel L. Figueroa, Marina Gil Sendra, Arne Wickenbrock, Matthew Lawson, Tao Wang, Teng Wu, Haosu Luo, Hamdi Mani, Philip Mauskopf, Peter W. Graham, Surjeet Rajendran, Derek F. Jackson Kimball, Dmitry Budker, and Alexander O. Sushkov Phys. Rev. Lett. **126**, 141802 – Published 9 April 2021

How to search for Axions (ALPs)?

Axion (ALP) Interactions

Gravity

Gauge Fields

$$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}$$
 $\frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu}$

Fermions

$$\frac{\partial_{\mu}a}{f_a}\bar{\Psi}_f\gamma^{\mu}\gamma_5\Psi_f$$

Most Searches

(CASPEr-E)

(CASPEr-Gradient, GNOME, QUAX)

CASPEr – Gradient Mainz – idea

Detecting oscillating torque on nuclear xenon-129 spins from (0.01-4) MHz

$$\frac{\partial_{\mu}a}{f_a}\bar{\Psi}_f\gamma^{\mu}\gamma_5\Psi_f$$

Larmor Frequency=Axion mass =>Resonant enhancement

Polarized nuclear spins

- B field
- Axion gradient couples to spins
- ->Oscillating torque on spins
- Transversal magnetization
- Pickup (somehow)

Talk by Hendrik Bekker (Thursday)

Casper Gradient Low field 0.01-4 MHz Casper Gradient High Field 4-600 MHz

Two ways to search

(b)

Perp. To B Sensitivity plane

Parallel to B Sensitivity axis

Take home messages

- 1. Gradient signal = 3D pseudo magnetic field vector rotating in space with two independent phases
- **2. Gradient line shape** fundamentally different (from the scalar lineshape)
- 3. Most power in the direction of movement (~ linear polarized signal)
- 4. Larger effect of annual and daily modulation
 - 1. On signal amplitude
 - 2. On signal frequency
- 5. Not new, but still: Virialized dark matter power spectra = modulated white noise

Derivation of the **scalar** lineshape

Axion field

Random acc. speed!

 $\nu_n = \left(1 + \frac{v_n^2}{2a^2}\right)\nu_a$

Random!

$$a(\mathbf{r},t) = \frac{a_0}{\sqrt{N}} \sum_{n=1}^{\infty} a_n$$

$$\cos\left(2\pi \nu_n t - \mathbf{k}_n \cdot \mathbf{r} + \phi_n\right)$$

Revealing the dark matter halo with axion direct detection

Joshua W. Foster, 1 Nicholas L. Rodd, 2 and Benjamin R. Safdi 1 ¹Leinweber Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA ²Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 19 January 2018; published 14 June 2018)

Axion field frequency class j

$$a_{j}(t) = \frac{a_{0}}{\sqrt{N_{j}}} \sum_{i \in \Omega_{i}} \cos(\omega_{j} t + \phi_{i}) \propto \Re \left(\exp(i\omega_{j} t) \sum_{i \in \Omega_{i}} \exp(i\phi_{i}) \right)$$

Central limit theorem:

$$\sum_{i\in\Omega_j} \exp\left(i\phi_i
ight) =$$
18.06.2021, Patras

Scalar lineshape –

$\lambda(\nu) = f(v) \frac{dv}{d\nu} \Big|_{v=c\sqrt{2(\nu/\nu_a - 1)}}$ Speed probability distribution Maxwell–Boltzmann (σ_v =156km/s) 0.0035 500. 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 1000 200 400 600 800

18.06.2021, Patras

ALP velocity distribution

Ciaran O'Hare PHYSICAL REVIEW D 95, 063017 (2017)

Scalar lineshape – Power spectra, exponentially distributed in each bin.

Derivation of the **gradient** lineshape

Gradient Axion field

Random 3D velocity

 $\nabla a(\mathbf{r}, t) = \frac{\sqrt{2\rho_{\mathrm{DM}}}}{c\sqrt{N}}$

Random acc. speed! Random!
$$\sum_{n=1}^{N} \mathbf{v}_n \sin \left(2\pi v_n t - \mathbf{k}_n \cdot \mathbf{r} + \phi_n\right)$$

Gradient field frequency class j, x-direction

$$abla a_{j,x}(t) \propto \Im \left[\exp\left(i\omega_{j}t\right) \sum_{i \in \Omega_{j}} \underbrace{v_{x,i}}_{\text{New!}} \exp\left(i\phi_{i}\right) \right]$$

2

Central limit theorem:

$$\sum_{i \in \Omega} v_{x,i} \exp(i\phi_i) \propto \sqrt{N_j \left(\sigma_{v_x}^2 + \mu_{v_x}^2\right) \alpha_j} \exp(i\phi_j)$$

Rayleigh distributed amplitude

Random phase, different for different directions!

18.06.2021, Patras

Scaling with lab velocity

Perpendicular to the direction of movement

In the direction of movement

Daily modulation

CASPEr Mainz B₀

Earth velocity

Strong daily intensity modulation And

Daily frequency modulation! (10%-15% FWHM)

Take home messages

- 1. Gradient signal = 3D pseudo magnetic field vector rotating in space with two independent phases
- **2. Gradient line shape** fundamentally different (from the scalar lineshape)
- 3. Most power in the direction of movement (~ linear polarized signal)
- 4. Larger effect of annual and daily modulation
 - 1. On signal amplitude
 - 2. On signal frequency
- 5. Not new, but still:

Virialized dark matter power spectra = modulated white noise

Wavy Dark Matter summer in Mainz/Germany August 2022

Mon, 01nd Tue, 02nd Wed, 03th Thu, 04th Fri, 05th **UDM UDM UDM UDM UDM Bad Honnef Bad Honnef Bad Honnef Bad Honnef Bad Honnef** Mon, 08th Tue, 09th Wed, 10th Thu, 11th Fri, 12th **PATRAS PATRAS PATRAS PATRAS PATRAS** Mainz Mainz Mainz Mainz Mainz Tue, 16th Mon, 15th Wed, 17th Thu, 18th Fri, 19th **MITP MITP** MITP **MITP MITP** Mainz Mainz Mainz Mainz Mainz

Bad Honnef Ultralight Dark Matter

Summer school Scientific foundations and experimental searches

Mainz Institute of Theoretical Physics - Workshop

Searches for Wave-Like Dark Matter

Proposal! with Quantum Networks

Thank you

