Status of CASPEr-wind and study of its quantum sensitivity limits

Yuzhe Zhang and Dr. Hendrik Bekker for the CASPEr collaboration

- 1. Introduction
- 2. Nuclear magnetic resonance
- 3. Hyperpolarized ¹²⁹Xe
- 4. Reaching the quantum projection noise limit
- 5. Conclusions and outlook

Axions and axion-like particles (ALPs)

Coupling to	Operator	Experiment
Photon	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}$	ABRACADABRA, ADMX, ALPS, CAST, HAYSTAC
Gluon	$\frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu}$	CASPEr-electric ->Dr. Deniz Aybas, today 16:10 "Searching for axion-like dark matter with CASPEr-electric"
Fermion	$\frac{\partial_{\mu}a}{f_a}\overline{\Psi}_f\gamma^{\mu}\gamma_5\Psi_f$	QUAX, ARIADNE, GNOME -> Hector M. Roig, today 14:15 "Search for Axion domain walls using the Global Network of Optical Magnetometers for Exotic physics (GNOME)" CASPEr-gradient
a axion field $F_{\mu\nu}$ field strength of electromagnetism $G_{\mu\nu}$ field strength of QCD Ψ_f standard model fermion		

*Operators from Graham, P. W. and S. Rajendran, Phys. Rev. D 88, 035023 (2013)

Motivation: search for ALPs with nuclear magnetic resonance (NMR)

Pulsed NMR scheme

*Figure from D. Aybas *et al*, Search for axion-like dark matter using solid-state nuclear magnetic resonance, Phys. Rev. Lett. 126 (14), 141802

Methanol н-с-он (proton) NMR experiment

Superconducting quantum interference devices (SQUIDs)

**Gradiometer coil illustration made by Nataniel Figueroa Leigh

Noise limit of the SQUIDs

6

Hyperpolarized ¹²⁹Xe sample

Romalis, M. V., and M. P. Ledbetter. "Transverse Spin Relaxation in Liquid ¹²⁹Xe in the Presence of Large Dipolar Fields." *Phys. Rev. Letters* 87, no. 6 (2001): 067601 Limes, M. E., Z. L. Ma, E. G. Sorte, and B. Saam. "Robust Solid ¹²⁹Xe Longitudinal Relaxation Times." *Phys. Rev. B* 94, no. 9 (2016): 094309 Sensitivity of NMR to perturbing field determined by population imbalance, polarization

$$Pol = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

In thermal equilibrium, typically

 $Pol \approx 10^{-6}$

Hyperpolarized ¹²⁹Xe, several labs demonstrated

Pol > 0.5

Property	Value
Liquid temp. range	161 — 165 K
Spin density	$1.3 \cdot 10^{22} \text{cm}^{-3}$
Volume	0.25 mL
Transverse spin relaxation T_2	≈ 1300 s
Longitudinal relaxation T_1	≈ 1500 s

Spin exchange optical pumping (SEOP)

M. G. Sendra, "Characterization and preparation of hyperpolarized xenon for the Cosmic Axion Spin Precession Experiment", MSc thesis JG University Mainz (2017) Imai *et al*, "Continuous Flow Production of Concentrated Hyperpolarized Xenon Gas from a Dilute Xenon Gas Mixture by Buffer Gas Condensation." *Scientific Reports* 7, no. 1 (2017): 7352 Kavtanyuk *et al*, "Production of Hyperpolarized ¹²⁹Xe Using Spin Exchange Optical Pumping." *Journal of the Korean Phys. Soc.* 73, no. 10 (2018): 1458–65 Hersman *et al*, "Large Production System for Hyperpolarized 129Xe for Human Lung Imaging Studies." *Academic Radiology* 15, no. 6 (2008): 683–92

The SEOP setup

SEOP cell

- Xe, N₂, and He mixed with Rb vapor ٠
- Interaction region for 795 nm laser light at D1 line
- Spin exchange between Rb and ¹²⁹Xe •

Measurements by Gary Centers and Arian Dogan

SEOP cell

- Xe, N₂, and He mixed with Rb vapor
- Interaction region for 795 nm laser light at D1 line
- Spin exchange between Rb and ¹²⁹Xe

SEOP cell

- Xe, N₂, and He mixed with Rb vapor
- Interaction region for 795 nm laser light at D1 line
- Spin exchange between Rb and ¹²⁹Xe

NMR diagnostic

• Polarization, P = 11(3) % achieved, further optimization underway

Measurements by Gary Centers and Arian Dogan

SEOP cell

- Xe, N₂, and He mixed with Rb vapor
- Interaction region for 795 nm laser light at D1 line
- Spin exchange between Rb and ¹²⁹Xe

NMR diagnostic

• Polarization, P = 11(3) % achieved, further optimization underway

Cryoseparator

- Freeze out Xe
- Store until needed
- Conserve polarization in 0.2 T field ($T_1 > 1$ h)

CASPEr-gradient high field

- Magnet and cryostat in production
 - 0 14.1 T
 - Actively shielded
 - Warm bore
- Classical NMR probe to be designed

Conclusions so far

- CASPEr-gradient low field
 - Probe g_{aNN} in mass range $5 \cdot 10^{-12} 5 \cdot 10^{-9} \text{ eV}$
 - First test measurements on thermal proton spins <u>underway</u>
 - Polarization of 11(3) % achieved for ¹²⁹Xe
 - Connection of ¹²⁹Xe to cryostat under construction
- CASPEr-gradient high field
 - Probe g_{aNN} in mass range $10^{-9} 10^{-6}$ eV
 - Magnet expected Christmas 2021
 - NMR probe to be designed

Fundamental noise limit of NMR

D. Aybas *et al*, Search for axion-like dark matter using solid-state nuclear magnetic resonance, Phys. Rev. Lett. 126 (14), 141802

Spin projection noise 1, Heisenberg

$$[s^{2}, s_{z}] = [s^{2}, s_{z}] = [s^{2}, s_{z}] = 0$$

$$[s_{x}, s_{z}] = i\hbar s_{y}$$

$$[s_{y}, s_{z}] = i\hbar s_{x}$$

Measurement of s_x of a spin in the state $\{s, s_z\}$ will yield $s_x = \pm |m_s|$ with 50 % probability each

Central limit theorem: for N independent spins the magnetization $M_x \propto \sum_N m_s$ follows the normal distribution

Spin projection noise 2, Bloch

"Even in the absence of any orientation by an external magnetic field one can expect in a sample with N nuclei of magnetic moment μ_N to find a resultant moment of the order $\sqrt{N}\mu_N$ because of statistically incomplete cancellation."

100 precessing spins with random phases

F. Bloch, "Nuclear Induction." Phys. Rev. 70, no. 7–8 (October 1, 1946): 460–74

Spin projection noise 2, Bloch

100 precessing spins with random phases

N. Mueller, A. Jerschow, and J. Schlagnitweit, Nuclear Spin Noise, eMagRes. Vol. 2. 2. Chichester, UK: John Wiley & Sons, Ltd, 2013, pp. 237–243 Two contributions to NMR spin noise

- **Detection** 1. Spin projection noise
 - 2. Back action (absorbed circuit noise, Jerschow *et al*)
 - Historically called "radiation damping" in the NMR community
 - Described by relaxation mechanism with characteristic time T_r -> line broadening

$$\frac{1}{T_r} = \frac{1}{2} q Q_c \gamma \mu_0 M_0$$

q filling factor Q_c coil Q-value γ spin gyromagnetic ratio μ_0 permeability of free space M_0 sample magnetization

Equivalent network

D. Aybas *et al*, Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics, Quantum Science and Technology, Focus on Quantum Sensors for New-Physics Discoveries (2021)

Noiseless amplifier

Sample + coil in thermal equilibrium at 300 K

- bare circuit noise (no spins)
spin projection noise
amplifier noise (with spins)
thermal noise (with spins)
full circuit + spin projection noise

Real amplifier

Amplifier + sample + coil in thermal equilibrium at 300 K

- bare circuit noise (no spins)
spin projection noise
amplifier noise (with spins)
thermal noise (with spins)
full circuit + spin projection noise

Real amplifier, hyperpolarized sample

Amplifier + coil in thermal equilibrium at 300 K

Noise limit including back action

 $2 \cdot 10^{26}$ spins, $Q_C = 10^3$

Back-action evasion in SQUIDs

Flux-locked loop network compensates flux in SQUID

CASPEr-gradient high field

- Magnet and cryostat in production
 - 0 14.1 T
 - Actively shielded
 - Warm bore
- Classical NMR probe to be designed
 - Optimized for DM search
 - Q-switching?
 - Active feedback?

 $\frac{\mathbf{I}}{T_r} = \frac{\mathbf{I}}{2} q Q_c \gamma \mu_0 M_0$

Acknowledgements

Collaborators

Dr. Deniz Aybas today at 16:10 "Searching for axion-like dark matter with CASPEr-electric"

SIMONS FOUNDATION

Conclusions and outlook

- CASPEr-gradient low field
 - Probe g_{aNN} in mass range $5 \cdot 10^{-12} 5 \cdot 10^{-9}$ eV
 - First test measurements on thermal proton spins underway
 - Polarization of 11(3) % achieved for ¹²⁹Xe
 - Connection of ¹²⁹Xe to cryostat under construction
- CASPEr-gradient high field
 - Probe g_{aNN} in mass range $10^{-9} 10^{-6}$ eV
 - Magnet expected Christmas 2021
- Probe design considerations
 - Goal: reach spin projection noise limit
 - Suppress backaction!

D. Aybas *et al*, Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics, Quantum Science and Technology, Focus on Quantum Sensors for New-Physics Discoveries (2021)

