

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### **The DMRadio Program Reyco Henning** University of North Carolina at Chapel Hill Triangle Universities Nuclear Laboratory

Reyco Henning

PATRAS, 14 June, 2021

# TUNL







 $\Omega_{\mathrm{a}} \sim \left(rac{f_{\mathrm{a}}}{10^{12}\,\mathrm{GeV}}
ight)^{7/6}.$ 

#### PATRAS, 14 June, 2021

Reyco Henning

# Axion as "Light" DM

The DMRadio Program



# **QCD Axion Couplings**

 $m_{\rm a} \simeq 0.6 \,\mathrm{eV} \frac{10^7 \,\mathrm{GeV}}{f_{\rm a}}$ 





Reyco Henning

PATRAS, 14 June, 2021

*f<sub>a</sub>* : PQ Symmetry Breaking Scale Relationship Model-dependent



The DMRadio Program



# **QCD Axion Couplings**

 $m_{\rm a} \simeq 0.6 \,\mathrm{eV} \frac{10^7 \,\mathrm{GeV}}{f_{\rm a}}$ 



Reyco Henning

PATRAS, 14 June, 2021

*f<sub>a</sub>* : PQ Symmetry Breaking Scale Relationship Model-dependent

The DMRadio Program





#### PATRAS, 14 June, 2021

Reyco Henning

C. O'Hare github.com/cajohare/AxionLimits







#### PATRAS, 14 June, 2021

**Reyco Henning** 

C. O'Hare github.com/cajohare/AxionLimits

The DMRadio Program





PATRAS, 14 June, 2021

Reyco Henning

C. O'Hare github.com/cajohare/AxionLimits

The DMRadio Program



#### PATRAS, 14 June, 2021

Reyco Henning

github.com/cajohare/AxionLimits

The DMRadio Program



### **Ultralight Dark Matter Parameter Space**



Reyco Henning

PATRAS, 14 June, 2021

Office of High Energy Physics (HEP) Department of Energy Office of Science. Basic research needs for dark matter small projects new initiatives. Technical report, Dec 2018.





### **Ultralight Dark Matter Parameter Space**



Reyco Henning

PATRAS, 14 June, 2021

Office of High Energy Physics (HEP) Department of Energy O ce of Science. Basic research needs for dark matter small projects new initiatives. Technical report, Dec 2018.





$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Reyco Henning

PATRAS, 14 June, 2021

## Lumped Element Fundamentals

The DMRadio Program





$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Reyco Henning

PATRAS, 14 June, 2021

## Lumped Element Fundamentals

The DMRadio Program





$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

**E=0**, DM *v* ~10<sup>-3</sup>

Reyco Henning

PATRAS, 14 June, 2021

## Lumped Element Fundamentals





$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}}} \cos(m_a t) \mathbf{B}_{\mathbf{0}}$ 

Reyco Henning

PATRAS, 14 June, 2021

## Lumped Element Fundamentals

The DMRadio Program





$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}}} \cos(m_a t) \mathbf{B}_{\mathbf{0}}$ 

**Reyco Henning** 

PATRAS, 14 June, 2021

## Lumped Element Fundamentals



### Static B-Field







$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}}} \cos(m_a t) \mathbf{B}_{\mathbf{0}}$ 

**Reyco Henning** 

PATRAS, 14 June, 2021

## Lumped Element Fundamentals









$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2} \rho_{\text{DM}} \cos(m_a t) \mathbf{B}_{\mathbf{0}}$ 

Reyco Henning

PATRAS, 14 June, 2021

# Lumped Element Fundamentals



### DM-axion Induced B-field

The DMRadio Program





$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2} \rho_{\text{DM}} \cos(m_a t) \mathbf{B}_{\mathbf{0}}$ 

Reyco Henning

PATRAS, 14 June, 2021

# Lumped Element Fundamentals









$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}} \cos(m_a t)} \mathbf{B}_{\mathbf{0}}$ 

**Reyco Henning** 

PATRAS, 14 June, 2021

# Lumped Element Fundamentals



### Near-field limit: $\lambda >>$ Size of Experiment







## History: Lumped Element

Tuned LC Circuit Readout: Cabrera, *Thomas*, 2010



#### DM Radio Dark Photon Search PRD 92 (2015) 075012





**Toroidal Magnet** ABRACADABRA: PRL 122 (2018) 121802 SHAFT: Nature Physics 17 (2021) 79



#### Reyco Henning

#### PATRAS, 14 June, 2021

**Broadband Readout** PRL 117 (2016) 141801



Solenoidal Magnet: PRL 112 (2014) 131301 PRD 97 (2019) 072011 PRL124 (2020) 241101











### Induced B-field





Measure induced field using pickup loop DC B-field free

Reyco Henning

PATRAS, 14 June, 2021

## **ABRACADABRA-10cm**







### **ABRACADABRA-10cm** Results

- First Broadband Search: *PRL 122 (2018) 121802*
- Made improvements to pickup, cabling, data-analysis and cleaning
- New Broadband Limits: 2102.06722



 $m_a$  [neV]



Reyco Henning

PATRAS, 14 June, 2021







### **DMRadio Program overview**

- Merger of ABRACADABRA and **DMRadio Collaborations**
- Continue R&D with ABRA
- DMRadio-50L is currently being constructed and is an ALP search and testbed for advanced quantum sensors.
- DMRadio-m<sup>3</sup> uses mature technology and will provide a flagship axion experiment
- DMRadio-GUT is a future GUT-scale axion search capable of probing ~neV axions with ~10m-scale magnets and quantum readout.







- Toroidal Magnet: 0.1-1.0 T
- 50I Science Volume of Magnet
- Super conducting sheath coupled to pickup
- Tunable LC Resonator
- 50 MHz Upper Limit Toroidal Design of this Size
- In design/early construction phase
- Data-taking starting ~2022



# DM Radio 50





# **DM Radio 501 Design Studies**

Operation

(Closed)

### Magnet Fringe Fields



### Optimal Sheath/ Pickup Coupling



**Reyco Henning** 

#### PATRAS, 14 June, 2021

### **Resonator Optimization**











#### **DMRadio**-*m*<sup>3</sup> Science Goals

- 1. Probe the QCD axion band from 5 200 MHz (~  $20 \text{neV} 0.8 \mu \text{eV}$ ) at  $3\sigma$ , with systematics at least 5 times smaller.
- 2. Detect or exclude KSVZ axions from 10 200 MHz ( $\sim 40$ neV  $0.8\mu$ eV) at  $3\sigma$ , with systematics at least 5 times smaller.
- 3. Detect or exclude DFSZ axions from 30 200 MHz (~  $0.12 \mu \text{eV} 0.8 \mu \text{eV}$ ) at  $3\sigma$ , with systematics at least 5 times smaller.
- 4. Confirm any axion detection to  $> 5\sigma$ .

>1.5 decades of well motivated axion mass coverage enabled by lumped-element resonators

### **Design Study funded by DOE- HEP Proposal Submission in 2022**

Reyco Henning

PATRAS, 14 June, 2021

# DMRadio-m<sup>3</sup>





# Axion signal coupling

### Solenoidal Design:

- Cheaper magnet
- Allows search to 200MHz



Reyco Henning

PATRAS, 14 June, 2021

The DMRadio Program



# Axion signal coupling



Reyco Henning

PATRAS, 14 June, 2021

### - Solenoid

Effective current induced by axions parallel to dc magnetic field



# Axion signal coupling



Reyco Henning

PATRAS, 14 June, 2021

Azimuthal ac B field induced by axion effective currents







Reyco Henning

PATRAS, 14 June, 2021

# Axion signal coupling

Ac B field from axions induces Flux F through dashed cross-section of the coaxial pickup







### Slit in top end of coax Voltage V=d $\Phi$ /dt across slit



### Closed (shorted) end of coax

PATRAS, 14 June, 2021

Reyco Henning

# Axion signal coupling

Ac B field from axions induces Flux Φ through dashed cross-section of the coaxial pickup







### Slit in top end of coax Voltage V=d $\Phi$ /dt across slit



### Closed (shorted) end of coax

Reyco Henning

PATRAS, 14 June, 2021

# Axion signal coupling

With a tunable capacitor, forms a lumped-element resonator





### System overview – signal flow



PATRAS, 14 June, 2021

Reyco Henning

Full optimization of axion scan: see arxiv:1803.01627













# Statistical error budget

### Statistical error budget quantified by "performance figure of merit"



Figure (



Reyco Henning

PATRAS, 14 June, 2021

| o correction    | $C_x$                  | 1.04                      |
|-----------------|------------------------|---------------------------|
| ic field        | B <sub>eff</sub>       | Reference 3.6 T           |
|                 |                        | Goal: 4.3 T               |
| volume          | V                      | 1.25 m <sup>3</sup>       |
| factor          | Q                      | 150,000                   |
| emperature      | Т                      | 0.02 K                    |
| noise parameter | η                      | $20 \times$ quantum limit |
| of merit        | <i></i> <sub>FOM</sub> | Reference: 112            |
|                 |                        | Goal: 134                 |
|                 |                        |                           |

arxiv:1803.01627





# DM Radio GUT

DMRadio-GUT: ambitious, longterm experiment to look for GUTscale QCD axions

- 12T, 10m<sup>3</sup>, 570 MJ magnet
  - CMS: 3.8T peak field, 2.3 GJ
- Q = 2x10<sup>7</sup> (Material selection, design)
- 20 dB of backaction noise reduction below SQL
- 7 years of run time



CMS







### The DMRadio Scientific Collaboration

Stanford Linear Accelerator Center H.-M. Cho, W. Craddock, N. Kurita, D. Li Department of Physics, Stanford University C. S. Dawson, P.W. Graham, S. P. Ho, K. D. Irwin, F. Kadribasic, S. Kuenstner, N. Rapidis, M. Simanovskaia, J. Singh, E. C. van Assendelft, K. Wells Department of Physics, Johns Hopkins University S. Rajendran Laboratory of Nuclear Science, Massachusetts Institute of Technology J. L. Ouellet, K. Pappas, C. Salemi, L. Winslow Department of Physics and Astronomy, University of North Carolina, Chapel Hill R. Henning Department of Physics, University of Illinois, Urbana-Champagne Y. Kahn Department of Nuclear Engineering, University of California, Berkeley A. Droster, A. Keller, A. F. Leder, K. van Bibber, M. Wooten Physics Division, Lawrence Berkeley National Lab B. R. Safdi Accelerator Technology & Applied Physics Division, Lawrence Berkeley National Lab L. Brouwer California State University, East Bay A. Phipps Department of Physics, Princeton University, Princeton S. Chaudhuri, R. Kolevatov Department of Physics, Santa Clara University B. A. Young









Reyco Henning





#### PATRAS, 14 June, 2021









### Office of Science

Stanford University





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL











- QCD axions using lumped-element resonators
- Several Experiments in progress or being proposed.

**Reyco Henning** 

PATRAS, 14 June, 2021

# DMRadio Program provide path to probe pre-inflation DM

The DMRadio Program



## **BONUS SLIDES**

Reyco Henning

PATRAS, 14 June, 2021





Tuning with insertible dielectrics High purity sapphire (DM Radio Pathfinder)

- $\bullet$

 $\bullet$ 

ullet

- 20 mK.

DMRadio-m3 is in a low magnetic field, shielded environment, and uses superconducting electrodes Baseline tunable capacitor design uses an insertable dielectric (low-loss sapphire) At least two capacitor sets are required to cover the full frequency range of DMRadio-m3 Reliable numbers for 20 mK loss in sapphire over DMRadio-m3 frequency range are not available. We are developing infrastructure to screen sapphire at

Backup capacitor design utilizes vacuum-gap rotary design. It would require more capacitor set swaps.



# DMRadio-m3 dc SQUID

- DM Radio requires either one or two dc SQUID channels (2<sup>nd</sup> for calibration).
- DM Radio specifies SQUID sensitivity at 20x the quantum limit. This performance was previously achieved with a commercial Quantum Design SQUID in a high-Q, low-temperature electromagnetic resonator (Falferi, APL 93, 172506 (2008)).
- We are evaluating SQUIDs from NIST, Magnicon, Quantum Design, Star Cryo, SeeQC, VTT.
- We are evaluating room-temperature preamplifiers from NIST and Magnicon (e.g. XXF-1), as well as a possible SLAC design.
- Two SQUID modules being defined
  - Low noise (20x the quantum limit), 50 MHz bandwidth module.
  - High bandwidth module (200 MHz).



### **A Sample of Current Collaboration** Work



Reyco Henning



### Many studies already performed in support of the current design or DMRadio 50L and similar studies underway for DMRadio m<sup>3</sup> PATRAS, 14 June, 2021

10<sup>-8</sup> 10-10 g<sub>ayy</sub> (GeV<sup>-1</sup>) 10-12 10-14  $10^{-16}$  - $10^{-18} + 10^{-11}$ 

### PATRAS, 14 June, 2021

Reyco Henning



The DMRadio Program



### **Dissecting ABRACADABRA-10 cm**



Superconducting Pickup Loop  $r_p = 2 \text{ cm}$ 

Superconducting Calibration Loop  $r_c = 4.5$  cm

Reyco Henning

PATRAS, 14 June, 2021

CJ

12

### 12 cm

Delrin Toroid Body

80×16 NbTi (CuNi) winds (counterwound)

The DMRadio Program



### **Dissecting ABRACADABRA-10 cm**

G10 Support structure (nylon bolts)

### Copper

### **Thermalization Bands**

PATRAS, 14 June, 2021

Reyco Henning

### Superconducting tin coated copper shield



The DMRadio Program



# **Mounting ABRA**

### Kevlar Support



Reyco Henning

PATRAS, 14 June, 2021



The DMRadio Program



### **Two Readout Strategies**

### **Broadband**

Scan all frequencies simultaneously > ~50 Hz dominated by flux noise in SQUID magnetometer:  $S_{\Phi,0}^{1/2} \sim 10^{-6} \Phi_0 / \sqrt{\text{Hz}}$ < ~50 Hz 1/*f* noise dominates Broadband Sensitivity: > ~50 Hz  $g_{a\gamma\gamma} \propto (\frac{m_a}{t})^{\frac{1}{4}} \frac{R}{R}$ 

### **Resonant**

Resonance enhancement by adding capacitor with  $Q \sim 10^6$ Scan across frequencies  $L_p$   $Q \downarrow L$ Thermal noise in pickup loop dominates  $L_i$ Resonance Mode Sensitivity:

 $g_{a\gamma\gamma} \propto \sqrt{L_T} \left(\frac{1}{m_a t}\right)^{\frac{1}{4}} \frac{1}{B_{\max} G V_B} \sqrt{\frac{k_B T}{\rho_{\rm DM} Q_0}}$ 

#### Reyco Henning

#### PATRAS, 14 June, 2021





The DMRadio Program

# **Axion Astrophysics**



Reyco Henning

PATRAS, 14 June, 2021



Frequency [Hz]





### **Broadband Data Collection** Procedure

- Collected data with magnet on continuously for 4 weeks from July August •
- AlazarTech ATS9870 8-bit Digitizer locked to a Rb oscillator frequency standard
- 10 MS/s for  $2.4 \times 10^6$  seconds (25T samples total)
- Apply FFTW on-the-fly on DAQ machine to compute Power Spectral Distributions (PSD)
- Acquisition (currently) limited to 1 cpu and 8 TB max data size



Reyco Henning

PATRAS, 14 June, 2021







- Off-the-shelf Magnicon DC SQUIDs
  - 2 Stage •
  - Typical noise floor ~1  $\mu \Phi_0/(Hz)^{1/2}$ •
  - Optimized for operation < 1 K •
  - Typical gain of ~1.3 V/ $\Phi_0$ •
- No resonator (i.e. broadband readout)

# SQUID Readout

+FQ

rf Filters





- Pre-inflation PQ symmetry breaking allows axion masses 10<sup>-12</sup> to 10<sup>-4</sup> eV or even beyond
- GUT Scale Axion at ~ 1 neV ( $f_a$  ~ 10<sup>15</sup> GeV) generic feature of String Theories
- Many proposals exist for removing fine tuning of  $\theta$ required for  $m_a << 1 \mu eV$ . Typically require new particles.
- Or can just require long-scale inflation, eg. Phys. Rev. D 98, 035017 (2018)







PATRAS, 14 June, 2021

Reyco Henning

