Search for axion-like dark matter with ferromagnets

Alex Sushkov
Sasha Gramolin, Deniz Aybas, Janos Adam, Dorian Johnson
Axions and axion-like particles, axion-like dark matter

3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken up to GUT (10^{16} \text{ GeV}), Planck (10^{19} \text{ GeV}) scales

axion-like dark matter

- **ALP mass range**
 \[m_a c^2 < \text{meV}\]

- **dark matter energy density:**
 \[\rho_{\text{DM}} \approx 0.4 \frac{\text{GeV}}{\text{cm}^3} \approx (0.05 \text{ eV})^4\]

- **large number of particles per de Broglie wavelength**

- **ALP dark matter acts as a classical field**

axion-like field:
\[a(t) = a_0 \cos \omega_a t\]

\[\omega_a = \frac{m_a c^2}{\hbar} \rightarrow \text{ALP Compton frequency}\]

\[\rho_{\text{DM}} \propto a_0^2 \rightarrow \text{dark matter density}\]
Axions and axion-like particles, axion-like dark matter

1. Pseudoscalar light particle: spin = 0, wide range of possible masses \[a(t) = a_0 \cos \omega_t \]
2. Proposed to solve the strong CP problem of Quantum Chromodynamics \[\text{[Phys. Rev. Lett. 38, 1440 (1977)]} \]
3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10^{16} \text{ GeV}) or Planck (10^{19} \text{ GeV}) scales
4. Possible interactions with standard model particles:

interaction with photons:

\[\mathcal{L}_{\alpha\gamma\gamma} = g_{\alpha\gamma\gamma} a E \cdot B \]

→ ALP ↔ photon conversion in a magnetic field

→ precision electromagnetic sensors

interaction with gluons:

(strong-CP problem)

\[\mathcal{H}_{\text{EDM}} = g_{\alpha} a E^* \cdot I / I \]

→ nuclear spin \(I \) interacts with an oscillating electric dipole moment (EDM) \(d_n = g_\alpha a \) in presence of effective electric field \(E^* \)

interaction with leptons:

\[\partial_\mu a - \frac{a}{f_a} \bar{\psi}_\ell \gamma^\mu \gamma_5 \psi_\ell \]

→ nuclear spin \(I \) interacts with an effective magnetic field \(\nabla a \).

force mediator → ARIADNE

electron spin → QUAX

CASPEr-electric

CASPEr (Cosmic Axion Spin Precession Experiments) search for experimental signatures of these interactions using precision magnetic resonance

CASPEr-gradient

SHAFT → a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

\[\text{[A. Gramolin et al., Nature Physics 17, 79 (2021)]} \]
search for EDM and gradient couplings →
\[\mathcal{H}_{\text{EDM}} = g_d a E^* \cdot I / I \]
\[\mathcal{H}_{aNN} = g_{aNN} \nabla a \cdot I \]

talks by Deniz Aybas and Janos Adam

- precision magnetic resonance experiment using ^{207}Pb nuclear spin ensemble in a solid with broken inversion symmetry
- sensor → cryogenic RF amplifier, voltage noise: 0.05 nV/$\sqrt{\text{Hz}}$
 → magnetic field sensitivity @ 40 MHz: 2 fT/$\sqrt{\text{Hz}}$
- ALP search in the 162 neV to 166 neV mass range
- Limits (at 5σ level):
 \[|g_d| < 9.5 \times 10^{-4} \text{ GeV}^{-2} \]
 \[|d_n| < 1.0 \times 10^{-21} \text{ e} \cdot \text{ cm} \]
 \[|\theta| < 4.3 \times 10^{-6} \]
 \[|g_{aNN}| < 2.8 \times 10^{-1} \text{ GeV}^{-1} \]
- amplitudes of oscillations near 40 MHz
- goal: probe the QCD axion band for mass $\approx 10^{-12}$ to 10^{-9} eV

[D. Aybas et al., Phys. Rev. Lett. 126, 160505 (2021)]
[D. Aybas et al., Quant. Sci. Tech. (2021)]

[D. Aybas et al., Phys. Rev. Lett. 126, 160505 (2021)]
[D. Aybas et al., Quant. Sci. Tech. (2021)]
Axions and axion-like particles, axion-like dark matter

1. Pseudoscalar light particle: spin = 0, wide range of possible masses
 \[a(t) = a_0 \cos \omega_a t \]

2. Proposed to solve the strong CP problem of Quantum Chromodynamics
 \[\text{[Phys. Rev. Lett. 38, 1440 (1977)]} \]

3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10^{16} \text{ GeV}) or Planck (10^{19} \text{ GeV}) scales

4. Possible interactions with standard model particles:

 - **interaction with photons:**
 \[\mathcal{L}_{\alpha \gamma \gamma} = g_{\alpha \gamma \gamma} a E \cdot B \]
 → ALP ↔ photon conversion in a magnetic field
 → precision electromagnetic sensors

 - **interaction with gluons:** (strong-CP problem)
 \[\mathcal{H}_{\text{EDM}} = g_d a E^* \cdot I / I \]
 → nuclear spin \(I \) interacts with an oscillating electric dipole moment (EDM) \(d_n = g_d a \) in presence of effective electric field \(E^* \)

 - **interaction with leptons:**
 \[\partial_\mu \frac{a}{f_a} \bar{\psi} \gamma_\mu \gamma_5 \psi \]
 → nuclear spin \(I \) interacts with an effective magnetic field \(\nabla a \).
 force mediator → ARIADNE
 electron spin → QUAX

CASPEr-electric

CASPEr (Cosmic Axion Spin Precession Experiments) search for experimental signatures of these interactions using precision magnetic resonance

[D. Aybas et al., *Phys. Rev. Lett.* 126, 160505 (2021)]
[A. Garcon et al., *Sci. Adv.*, eaax4539 (2019)]

SHAFT → a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A. Gramolin et al., *Nature Physics* 17, 79 (2021)]

CASPEr-gradient

[D. Budker et al., *Phys. Rev. X* 4, 021030 (2014)]

ADMX, HAYSTAC, DMradio, ABRA, ALPS, CAST, IAXO, CAPP, ORGAN, SLIC, BREAD, LC circuit, MADMAX, KLASH, BRASS, many others

shaking → a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[D. Aybas et al., *Phys. Rev. Lett.* 126, 160505 (2021)]
[A. Garcon et al., *Sci. Adv.*, eaax4539 (2019)]
Search for Halo Axions with Ferromagnetic Toroids (SHAFT)

\[a(t) = a_0 \cos \omega_a t \]

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz

interaction with photons:

\[\mathcal{L}_{\alpha \gamma \gamma} = g_{\alpha \gamma \gamma} a \mathbf{E} \cdot \mathbf{B} \]

\[\nabla \times \mathbf{H} = \mathbf{J}_f \]

SHAFT → a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A. Gramolin et al., *Nature Physics* 17, 79 (2021)]

[Phys. Rev. D 92, 075012 (2015)]
[arXiv: 1811.03231 (2018)]
Search for Halo Axions with Ferromagnetic Toroids (SHAFT)

\[a(t) = a_0 \cos \omega_a t \]

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz

interaction with photons:

\[\mathcal{L}_{a\gamma\gamma} = g_{a\gamma\gamma} a E \cdot B \]

→ ALP ↔ photon conversion in a magnetic field

→ precision electromagnetic sensors

approach → additional term in Ampere’s law

\[\nabla \times \vec{H} = \vec{J}_f + \frac{g_{a\gamma\gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B} \]

azimuthal static magnetic field \(B_0 \)

[Phys. Rev. D 92, 075012 (2015)]
[arXiv: 1811.03231 (2018)]

SHAFT → a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A. Gramolin et al., Nature Physics 17, 79 (2021)]
Search for Halo Axions with Ferromagnetic Toroids (SHAFT)

\[a(t) = a_0 \cos \omega_a t \]

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz

interaction with photons:
- ALP field amplitude
- symmetry breaking scale
- \(\mathcal{L}_{a\gamma\gamma} = g_{a\gamma\gamma} a E \cdot B \)
- \(\frac{a}{f_a} F_{\mu
\nu} \tilde{F}^{\mu\nu} \)
- \(a \leftrightarrow \) photon conversion in a magnetic field
- precision electromagnetic sensors

approach → additional term in Ampere’s law

\[\nabla \times \vec{H} = \vec{J}_f + \frac{g_{a\gamma\gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B}_a \]

SHAFT → a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

[Phys. Rev. D 92, 075012 (2015)]
[arXiv: 1811.03231 (2018)]
Search for Halo Axions with Ferromagnetic Toroids (SHAFT)

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz

interaction with photons:

- ALP field amplitude: a / f_a
- Symmetry breaking scale: $\mathcal{L}_{\alpha \gamma \gamma} = g_{\alpha \gamma \gamma} a E \cdot B$

→ ALP ↔ photon conversion in a magnetic field
→ precision electromagnetic sensors

approach → additional term in Ampere's law

\[\nabla \times \vec{H} = \vec{J}_f + \frac{g_{a \gamma \gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B} \]

SHAFT → a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A. Gramolin et al., *Nature Physics* 17, 79 (2021)]
Experimental setup
Experimental setup

two detection channels, RF pickup appears in phase but ALP signal appears out of phase → systematic rejection

[A. Gramolin et al., *Nature Physics* 17, 79 (2021)]
Measurements of magnetization of ferromagnetic toroids

- a factor of 24 enhancement of magnetic field B_0
- $B_0 = 1.5 \text{ T}$ achieved at 6 A current

[A. Gramolin et al., *Nature Physics* 17, 79 (2021)]
Performance of SQUID magnetic field sensors

- two detection channels, RF pickup appears in phase, but ALP signal appears out of phase → **systematic rejection**
- SQUID sensor bandwidth → 2 MHz

[A. Gramolin et al., *Nature Physics* 17, 79 (2021)]
Performance of SQUID magnetic field sensors

- two detection channels, RF pickup appears in phase, but ALP signal appears out of phase → systematic rejection
- SQUID sensor bandwidth → 2 MHz

- magnetic field sensitivity → 150 aT/√Hz ≈ broadband record
Data analysis

- analyze data in 3-decade range: 12 peV to 12 neV, 2×10^7 possible ALP masses
- gaussian statistics; $\approx 13 \times 10^3$ candidates flagged
 (8×10^3 expected based on normal distribution)
- all candidates rejected by requiring detection in antisymmetric channel combination

New limits of electromagnetic interaction of axion-like particles

- Analyze data in 3-decade range: 12 peV to 12 neV, 2×10^7 possible ALP masses
- Gaussian statistics; ≈13×10^3 candidates flagged (8×10^3 expected based on normal distribution)
- All candidates rejected by requiring detection in antisymmetric channel combination

Result: Limit on electromagnetic interaction of axion-like dark matter

5σ limits reach 3.3 × 10^{-11} GeV^{-1} near 20 peV

[A. Gramolin et al., Nature Physics 17, 79 (2021)]
[new ABRA results, arXiv:2102.06722 (2021)]
New limits of electromagnetic interaction of axion-like particles

- Analyze data in 3-decade range: 12 peV to 12 neV, 2×10^7 possible ALP masses
- Gaussian statistics; ≈ 13×10^3 candidates flagged (8×10^3 expected based on normal distribution)
- All candidates rejected by requiring detection in antisymmetric channel combination

Result: Limit on electromagnetic interaction of axion-like dark matter

5σ limits reach 3.3 × 10^{-11} GeV^{-1} near 20 peV

[A. Gramolin et al., Nature Physics 17, 79 (2021)]
Alex Sushkov (Boston University): Search for axion-like dark matter with ferromagnets

CASPEr + DM-radio

team SHAFT: Sasha Gramolin, Deniz Aybas, Janos Adam, Dorian Johnson

Thank you!

[A. Gramolin et al., Nature Physics 17, 79 (2021)]
[D. DeMille et al., Science 357, 990 (2017)]
[D. Aybas et al., Quant. Sci. Tech. (2021)]
[D. Aybas et al., Phys. Rev. Lett. 126, 160505 (2021)]