# Search for axion-like dark matter with ferromagnets

Alex Sushkov Sasha Gramolin, Deniz Aybas, Janos Adam, Dorian Johnson













# Axions and axion-like particles, axion-like dark matter

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken up to GUT (10<sup>16</sup> GeV), Planck (10<sup>19</sup> GeV) scales

#### axion-like dark matter



axion-like field: 
$$a(t) = a_0 \cos \omega_a t$$
  
 $\Delta = m_a c^2 / \hbar \rightarrow \text{ALP Compton frequency}$   
 $\rho_{\text{DM}} \propto a_0^2 \rightarrow \text{dark matter density}$ 



ALP dark matter acts as a classical field



# Axions and axion-like particles, axion-like dark matter

1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. F

$$a(t) = a_0 \cos \omega_a t$$

- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10<sup>16</sup> GeV) or Planck (10<sup>19</sup> GeV) scales
- 4. Possible interactions with standard model particles:

#### interaction with photons:



 $\rightarrow$  ALP  $\leftrightarrow$  photon conversion in a magnetic field  $\rightarrow$  precision electromagnetic sensors

ADMX, HAYSTAC, DMradio, ABRA, ALPS, CAST, IAXO, CAPP, ORGAN, SLIC, BREAD, LC circuit, MADMAX, KLASH, BRASS, many others

 $\ensuremath{\textbf{SHAFT}}\xspace \to$  a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

interaction with gluons: (strong-CP problem)  $\frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu} \qquad a \cdots \tilde{J}_{G}^{G} \mathcal{N}$   $\mathcal{H}_{\rm EDM} = g_d a E^* \cdot I/I$ 

→ nuclear spin I interacts with an oscillating electric dipole moment (EDM)  $d_n = g_d a$  in presence of effective electric field  $E^*$ .

# interaction with leptons: $\frac{\partial_{\mu}a}{f_a} \bar{\psi}_{\ell} \gamma^{\mu} \gamma_5 \psi_{\ell}$ a------ $\mathcal{H}_{aNN} = g_{aNN} \nabla a \cdot \mathbf{I}$

 $\rightarrow$  nuclear spin I interacts with an effective magnetic field  $\nabla a$ .

force mediator  $\rightarrow$  ARIADNE electron spin  $\rightarrow$  QUAX

#### CASPEr-electric

#### **CASPEr-gradient**

CASPEr (Cosmic Axion Spin Precession Experiments) search for experimental signatures of these interactions using precision magnetic resonance

[D. Aybas et al., *Phys. Rev. Lett.* **126**, 160505 (2021)] [D. Aybas et al., *Quant. Sci. Tech.* (2021)] [D. Budker et al., *Phys. Rev. X* **4**, 021030 (2014)] [A. Garcon et al., Sci. Adv. **5**, eaax4539 (2019)]



## **CASPEr-e experimental results**

nucleon EDM coupling  $g_d$  (GeV<sup>-2</sup>)

$$\begin{array}{ll} \text{search for EDM and} & \mathcal{H}_{\text{EDM}} = g_d a \boldsymbol{E}^* \cdot \boldsymbol{I} / I \\ \text{gradient couplings} \rightarrow & \mathcal{H}_{aNN} = g_{aNN} \boldsymbol{\nabla} a \cdot \boldsymbol{I} \end{array}$$

talks by Deniz Aybas and Janos Adam



[D. Aybas et al., *Phys. Rev. Lett.* **126**, 160505 (2021)] [D. Aybas et al., *Quant. Sci. Tech.* (2021)]

|                        | • precision magnetic resonant<br>spin ensemble in a solid with<br>• sensor $\rightarrow$ cryogenic RF and<br>$\rightarrow$ magnetic field set<br>• ALP search in the 162 neV<br>• Limits (at 5 $\sigma$ level):<br>$ g_d  < 9.5 \times 10^{-4}  \mathrm{GeV}^{-2}$ | th broken inversion symmetry<br>applifier, voltage noise: 0.05 nV/ $\sqrt{Hz}$<br>ensitivity @ 40 MHz: 2 fT/ $\sqrt{Hz}$<br>to 166 neV mass range<br>$ d_n  < 1.0 \times 10^{-21} \mathrm{e\cdot cm}$<br>$ \theta  < 4.3 \times 10^{-6}$ |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | $ g_{aNN}  < 2.8 \times 10^{-1} \mathrm{GeV}$                                                                                                                                                                                                                      | $V^{-1}$ ▲ amplitudes of oscillations<br>near 40 MHz<br>band for mass ≈ 10 <sup>-12</sup> to 10 <sup>-9</sup> eV                                                                                                                         |
|                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                          |
| (a)<br>10 <sup>-</sup> | $\begin{array}{c} {\rm Compton\ frequency\ (Hz)}\\ ^{-6} 10^{-3} 10^{0} 10^{3} 10^{6} 10^{9} 10^{12} \end{array}$                                                                                                                                                  | (b) Compton frequency (Hz)<br>$\overrightarrow{1}$ 10 <sup>-6</sup> 10 <sup>-3</sup> 10 <sup>0</sup> 10 <sup>3</sup> 10 <sup>6</sup> 10 <sup>9</sup> 10 <sup>12</sup>                                                                    |
| 10-3                   | CASPEr-e                                                                                                                                                                                                                                                           | $\begin{array}{c} 10^{-1} \\ \hline \\ ULF CM \\ 10^{-6} \\ \hline \\ \\ nEDM \\ ULF SB \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                   |
| 10 <sup>-9</sup> - HfF | F <sup>+</sup> EDM                                                                                                                                                                                                                                                 | SN 1987A                                                                                                                                                                                                                                 |
| 0 <sup>-15</sup>       | DM                                                                                                                                                                                                                                                                 | 10 <sup>-16</sup>                                                                                                                                                                                                                        |
| 0-21                   | BBN                                                                                                                                                                                                                                                                | $\begin{bmatrix} 50 \\ 0 \\ 0 \end{bmatrix} 10^{-21}$                                                                                                                                                                                    |
| $10^{-21}$             | $10^{-15}$ $10^{-9}$ $10^{-3}$                                                                                                                                                                                                                                     | $ \overbrace{=}^{10^{-21}} 10^{-15} 10^{-9} 10^{-3} $                                                                                                                                                                                    |
|                        | mass (ev)                                                                                                                                                                                                                                                          | mass (ev)                                                                                                                                                                                                                                |

# Axions and axion-like particles, axion-like dark matter

- 1. Pseudoscalar light particle: spin = 0, wide range of possible masses [Phys. Rev. D 98, 035017 (2018)]
- $a(t) = a_0 \cos \omega_a t$
- 2. Proposed to solve the strong CP problem of Quantum Chromodynamics [Phys. Rev. Lett. 38, 1440 (1977)]
- 3. Axion-like particles (ALPs) arise naturally in string theories, symmetries broken at GUT (10<sup>16</sup> GeV) or Planck (10<sup>19</sup> GeV) scales
- 4. Possible interactions with standard model particles:



 $\rightarrow$  ALP  $\leftrightarrow$  photon conversion in a magnetic field  $\rightarrow$  precision electromagnetic sensors

ADMX, HAYSTAC, DMradio, ABRA, ALPS, CAST, IAXO, CAPP, ORGAN, SLIC, BREAD, LC circuit, MADMAX, KLASH, BRASS, many others

 $\ensuremath{\textbf{SHAFT}}\xspace \to$  a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

interaction with gluons:  
(strong-CP problem)  

$$\frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu}$$
 a.... $\mathcal{H}_{EDM}^{G} = g_d a \boldsymbol{E}^* \cdot \boldsymbol{I}/I$ 

→ nuclear spin I interacts with an oscillating electric dipole moment (EDM)  $d_n = g_d a$  in presence of effective electric field  $E^*$ .

#### **CASPEr-electric**

interaction with leptons:  $\frac{\partial_{\mu}a}{f_a} \bar{\psi}_{\ell} \gamma^{\mu} \gamma_5 \psi_{\ell}$  a----- $\mathcal{H}_{aNN} = g_{aNN} \nabla a \cdot \mathbf{I}$ 

 $\rightarrow$  nuclear spin I interacts with an effective magnetic field  $\nabla a$ .

force mediator  $\rightarrow$  ARIADNE electron spin  $\rightarrow$  QUAX

#### **CASPEr-gradient**

CASPEr (Cosmic Axion Spin Precession Experiments) search for experimental signatures of these interactions using precision magnetic resonance

[D. Aybas et al., *Phys. Rev. Lett.* **126**, 160505 (2021)] [D. Aybas et al., *Quant. Sci. Tech.* (2021)] [D. Budker et al., *Phys. Rev. X* **4**, 021030 (2014)] [A. Garcon et al., Sci. Adv. **5**, eaax4539 (2019)]

 $a(t) = a_0 \cos \omega_a t$ 

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz



 $\rightarrow$  ALP  $\leftrightarrow$  photon conversion in a magnetic field  $\rightarrow$  precision electromagnetic sensors

**SHAFT**  $\rightarrow$  a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

 $approach \rightarrow additional term in Ampere's law$ 

$$\vec{\mathbf{\nabla}} \times \vec{H} = \vec{J}_f$$

[Phys. Rev. Lett. **112**, 131301 (2014)] [Phys. Rev. D **92**, 075012 (2015)] [Phys. Rev. Lett. **117**, 141801 (2016)] [*arXiv:* 1811.03231 (2018)] [Phys. Rev. Lett. **122**, 121802 (2019)]

 $a(t) = a_0 \cos \omega_a t$ 

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz



 $\rightarrow$  ALP  $\leftrightarrow$  photon conversion in a magnetic field  $\rightarrow$  precision electromagnetic sensors

**SHAFT**  $\rightarrow$  a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

**approach**  $\rightarrow$  additional term in Ampere's law

$$\vec{\nabla} \times \vec{H} = \vec{J}_f + \frac{g_{a\gamma\gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B}$$

azimuthal static magnetic field  $B_0$ 

ቍ

axion field  $a(t) = a_0 \cos \omega_a t$ 

azimuthal effective current

$$\vec{J}_{\text{eff}} = \frac{g_{a\gamma\gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B}_0$$

[Phys. Rev. Lett. **112**, 131301 (2014)] [Phys. Rev. D **92**, 075012 (2015)] [Phys. Rev. Lett. **117**, 141801 (2016)] [*arXiv: 1811.03231* (2018)] [Phys. Rev. Lett. **122**, 121802 (2019)]

B

 $a(t) = a_0 \cos \omega_a t$ 

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz



 $\rightarrow$  ALP  $\leftrightarrow$  photon conversion in a magnetic field  $\rightarrow$  precision electromagnetic sensors

**SHAFT**  $\rightarrow$  a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores

[A.Gramolin et al., Nature Physics 17, 79 (2021)]

**approach**  $\rightarrow$  additional term in Ampere's law

$$\Rightarrow \quad \vec{\nabla} \times \vec{H} = \vec{J}_f + \frac{g_{a\gamma\gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B}$$

axion field  $a(t) = a_0 \cos \omega_a t$ 

azimuthal static

magnetic field  $B_0$ 

azimuthal effective current

$$\vec{J}_{\text{eff}} = \frac{g_{a\gamma\gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B}_0$$

axial oscillating magnetic field  $B_a$ 

[Phys. Rev. Lett. **112**, 131301 (2014)] [Phys. Rev. D **92**, 075012 (2015)] [Phys. Rev. Lett. **117**, 141801 (2016)] [*arXiv: 1811.03231* (2018)] [Phys. Rev. Lett. **122**, 121802 (2019)]

Bo

 $a(t) = a_0 \cos \omega_a t$ 

goal: search for electromagnetic coupling of axion-like dark matter in a broad mass (frequency) range: kHz - MHz



 $\rightarrow$  ALP  $\leftrightarrow$  photon conversion in a magnetic field  $\rightarrow$  precision electromagnetic sensors

**SHAFT**  $\rightarrow$  a kHz-MHz search using SQUIDs and ferromagnetic toroidal cores



**approach**  $\rightarrow$  additional term in Ampere's law

azimuthal static magnetic field  $B_0$ 

axion field  $a(t) = a_0 \cos \omega_a t$ 

azimuthal effective current

 $\vec{J}_{\text{eff}} = \frac{g_{a\gamma\gamma}}{\mu_0 c} \frac{\partial a}{\partial t} \vec{B}_0$ 

axial oscillating magnetic field  $B_a$ 

detected by SQUID



### Experimental setup





## Experimental setup





## Experimental setup





two detection channels, RF pickup appears in phase but ALP signal appears out of phase  $\rightarrow$  systematic rejection

## Measurements of magnetization of ferromagnetic toroids



## Performance of SQUID magnetic field sensors



## Performance of SQUID magnetic field sensors





### Data analysis



# New limits of electromagnetic interaction of axion-like particles



[A. Gramolin et al., Nature Physics 17, 79 (2021)]

17

# New limits of electromagnetic interaction of axion-like particles





#### Alex Sushkov (Boston University): Search for axion-like dark matter with ferromagnets



[D. Aybas et al., *Phys. Rev. Lett.* **126**, 100303 (2021) [D. Aybas et al., *Quant. Sci. Tech.* (2021)] [D. DeMille et al., *Science* **357**, 990 (2017)]