Superconducting Cavity for Dark Matter Axion Search

Danho Ahn, Seongtae Park, Ohjoon Kwon, Heesu Byun, Jinsu Kim, Andrei N. Matlashov, Woohyun Chung, Dojun Youm, Yannis K. Semertzidis

1Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
2Center for Axion and Precision Physics Research, Institute of Basic Science, Daejeon 34051, Republic of Korea
Outline

I
Dark Matter Axion Search & Superconducting Cavity R&D

II
Superconductor in a High Magnetic Field & Material Evaluation

III
Biaxially-Textured ReBCO Tapes, Polygon Geometry & First Prototype

IV
2.3 GHz Half-million Quality Factor ReBCO Cavity & Commissioning Run

V
Future Plan for Enhanced Axion Search using the ReBCO Cavity

(Credit: ESO/L. Calçada)
Dark Matter Axion Search (Axion Haloscope)

\[P_{\alpha \gamma \rightarrow \gamma} = g_{\alpha \gamma \gamma} \frac{\rho_a}{m_a^2} B^2 V \omega_0 C \frac{Q_a Q_c}{Q_a + Q_c} \]

Kim et al. JCAP03(2020)066

Sikivie PRL(1983)1415

(Credit: ESO/L. Calçada)
Revisiting Quality Factor

➢ Definition of Quality Factor

\[Q = \frac{\omega_0 U}{P_{loss}} \]

Angular Frequency \(\omega_0 \) Internal Energy \(U \)

Quality Factor \(Q \)

Total Energy Loss \(P_{loss} \)

➢ Decomposing Origins of Energy Loss

\[P_{surf} \propto R_s \]

Surface Current Loss

\[\frac{1}{Q} = \frac{P_{loss}}{\omega_0 U} = \frac{1}{\omega_0 U} \left(P_{surf} + P_{vol} + P_{rad} \right) \]

Volume Loss \(P_{vol} \)

Wave Propagation (Radiation) \(P_{rad} \)
Revisiting Quality Factor

➢ Definition of Quality Factor

\[Q = \frac{\omega_0 U}{P_{\text{loss}}} \]

Angular Frequency \(\omega_0 \) \(U \) Internal Energy

Quality Factor \(Q \) Total Energy Loss

➢ Decomposing Origins of Energy Loss

\[P_{\text{surf}} \propto R_s \]

\[\frac{1}{Q} = \frac{P_{\text{loss}}}{\omega_0 U} = \frac{1}{\omega_0 U} \left(P_{\text{surf}} + P_{\text{vol}} + P_{\text{rad}} \right) \]

Surface Current Loss

Volume Loss

\(\tan\delta \) Low Loss Tangent

Low Loss Tangent

Controlled by Geometric Design

Low Loss

High Q
Revisiting Quality Factor

Definition of Quality Factor

\[Q = \frac{\omega_0 U}{P_{loss}} \]

Decomposing Origins of Energy Loss

\[P_{surf} \propto R_s \]

- **Low Surface Resistance** → Superconductor (SC)

\[1 \left(\frac{1}{Q} \right) = \frac{P_{loss}}{\omega_0 U} = \frac{1}{\omega_0 U} \left(P_{surf} + P_{vol} + P_{rad} \right) \]

- **High Q**

2021 Patras Workshop
Dark Matter Axion Search (Axion Haloscope)

Photon (γ) → Virtual Photon (γ')

$P_{\alpha\gamma\rightarrow\gamma'} = g_{\alpha\gamma\gamma'} \frac{\rho_\alpha}{m_\alpha^2} B^2 V \omega_0 C \frac{Q_a Q_c}{Q_a + Q_c}$

Dark Matter Halo

Our Galaxy

High Magnetic Field

Axion Mass

Axion Quality Factor

Kim et al. JCAP03(2020)066

Sikivie PRL(1983)1415

(Credit: ESO/L. Calçada)
Superconductor in a High Magnetic Field

Three Phases of Type II Superconductor

- An external magnetic field can degrade Superconductivity.
- In a mixed state, type 2 SCs make vortices inside.
- Vortex pinning can make a low dissipative surface. (low R_s)
- SC Materials with a higher upper critical field (H_{c2}) have higher melting field (H_m) of vortices.
- High-temperature superconductors (HTS) are promising for making high Q factor cavities for axion haloscope.
Material Evaluation

<table>
<thead>
<tr>
<th></th>
<th>R_s (B = 0 T) (Ohm)</th>
<th>R_s (B = 8 T, $∥c$) (Ohm)</th>
<th>Critical Field (H_{c2})</th>
<th>Depinning Frequency</th>
<th>Film Fabrication Method</th>
<th>Cavity Fabrication</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFHC Cu (Metal)</td>
<td>~ 7E-3</td>
<td>~ 7E-3</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
<td>Machining</td>
</tr>
<tr>
<td>NbTi (LTS)</td>
<td>~ 1E-6</td>
<td>~ 4e-3</td>
<td>~ 13 T</td>
<td>~ 45 GHz</td>
<td>Deposition (No Texture Requirement)</td>
<td>Deposition</td>
</tr>
<tr>
<td>Gatti et al. PRD(2019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-2212 (HTS)</td>
<td>~ 1E-5</td>
<td>?</td>
<td>> 100 T ($∥ab$)</td>
<td></td>
<td>Weak Pinning</td>
<td></td>
</tr>
<tr>
<td>Bi-2223 (HTS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TI-1223 (HTS)</td>
<td>~ 1E-5</td>
<td>~ 1e-4</td>
<td>> 100 T ($∥ab$)</td>
<td>12 – 480 MHz</td>
<td>Deposition (No Texture Requirement)</td>
<td>Deposition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReBCO (HTS)</td>
<td>~ 1E-5</td>
<td>~ 1e-4</td>
<td>> 100 T ($∥ab$)</td>
<td>10 – 100 GHz</td>
<td>Deposition (Biaxial Texture)</td>
<td>1. Deposition 2. Using Tapes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Critical Field (H_{c2})**: The critical field is the magnetic field at which the material transitions from a superconducting state to a normal state.
- **Depinning Frequency**: The frequency at which the depinning of defects occurs.
- **Film Fabrication Method**:
 - Deposition (No Texture Requirement)
 - Deposition (Biaxial Texture)
 - Machining
- **Cavity Fabrication**: Indicates the method used for cavity fabrication.

References:
- Calatroni et al. SUST (2017)
- Romanov et al. Scientific Reports (2020)
- Ormeno et al. PRB (2001)
- Gatti et al. PRD (2019)
Biaxially Textured ReBCO Tape

- Biaxially-textured Rare-earth Barium Copper Oxide (ReBCO) films consist of strong links.
- It shows good performance of surface resistance in a high magnetic field at low temperature.
- Its depinning frequency is also high enough. (> 10 GHz)
- There are many providers that fabricate biaxially-textured ReBCO tapes.
Biaxially Textured ReBCO Tape

➢ Biaxially-Textured ReBCO films have anisotropy of surface resistance due to their crystal structure.

➢ The surface resistance of a film is maximized when the c axis of a crystal and the direction of an external magnetic field is parallel to each other.

➢ Directions of a ReBCO crystal should be considered to design a cavity.

How to make 3D surface with tapes?
Making 3D Surfaces with Tapes

CAPP’s Solution
Polygon Shape: From Planar Surfaces to a 3D Surface

12 Polygon, 12 Tapes

16 Polygon, 32 Tapes
The Advantages of the Polygon Cavity

Tape Direction: Minimized Surface Resistance
Vertical Cut: Avoiding Contact Problem

- Electric and Magnetic Field
- 6.85 GHz

- Surface Current
- Electric and Magnetic Field

Maximum current at the middle (parallel to ab)

Θ = 90 deg

9mm

Surface Resistance

Tape Direction: Minimized Surface Resistance
Vertical Cut: Avoiding Contact Problem

- Electric and Magnetic Field
- 6.85 GHz

- Surface Current
- Electric and Magnetic Field

Maximum current at the middle (parallel to ab)

Θ = 90 deg

9mm

Surface Resistance
First Prototype Cavity

- (2019) First Prototype HTS Cavity (with Prof. Dojun Youm)
 - (March 8th) Q \approx 150,000 at 8 T
 - (August 15th) Q \approx 330,000 at 8 T (Improved Tape Edge)

ArXiv: 1904.05111
ArXiv: 2103.14515
PRApplied Submitted
2.3 GHz Axion Search Cavity

➢ (2019 – 2020) 2.3 GHz ReBCO Cavity (Dr. Seongtae Park)
2.3 GHz Axion Search Cavity

➢ 2.3 GHz ReBCO Cavity (Dr. Seongtae Park)

✓ (December 8th, 2019) $Q \sim 340,000$ at 8 T

✓ (January 18th, 2020) $Q \sim 500,000$ at 8 T (Using Different Tape)
Tuning System

Simplified Tuning Simulation

- **h** = depth

<table>
<thead>
<tr>
<th>Resonant Frequency (Hz)</th>
<th>Q Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80E+09</td>
<td></td>
</tr>
<tr>
<td>1.90E+09</td>
<td></td>
</tr>
<tr>
<td>2.00E+09</td>
<td></td>
</tr>
<tr>
<td>2.10E+09</td>
<td></td>
</tr>
<tr>
<td>2.20E+09</td>
<td></td>
</tr>
<tr>
<td>2.30E+09</td>
<td></td>
</tr>
<tr>
<td>2.40E+09</td>
<td></td>
</tr>
</tbody>
</table>

- **TE112**
 - No Mode Crossing

- **TM010**
 - Small Q Drop

- **TE111**

<table>
<thead>
<tr>
<th>Form Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.25E+09</td>
</tr>
<tr>
<td>2.27E+09</td>
</tr>
<tr>
<td>2.29E+09</td>
</tr>
<tr>
<td>2.31E+09</td>
</tr>
</tbody>
</table>

- **Small C Drop**

2021-06-15

2021 Patras Workshop
Testing in a CAPP-PACE Chain

<table>
<thead>
<tr>
<th></th>
<th>HEMT Run</th>
<th>JPA Run</th>
<th>SC Run (Plan)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>2.457 – 2.749 GHz</td>
<td>2.27 – 2.30 GHz</td>
<td>2.27 – 2.30 GHz</td>
</tr>
<tr>
<td>Magnetic Field (B)</td>
<td>7.2 T</td>
<td>7.2 T</td>
<td>7.2 T</td>
</tr>
<tr>
<td>Volume (V)</td>
<td>1.12 L</td>
<td>1.12 L</td>
<td>1.5 L</td>
</tr>
<tr>
<td>Quality Factor (Q₀)</td>
<td>100,000</td>
<td>100,000</td>
<td>500,000 – 1,000,000</td>
</tr>
<tr>
<td>Geometrical Factor (C)</td>
<td>0.51 – 0.66</td>
<td>0.45</td>
<td>0.51 – 0.65</td>
</tr>
<tr>
<td>System Noise (Tₜₚₛ)</td>
<td>1.1 K</td>
<td>200 mK</td>
<td>200 mK</td>
</tr>
<tr>
<td>Scan Rate (Arb.)</td>
<td>1</td>
<td>18</td>
<td>150 – 300</td>
</tr>
</tbody>
</table>

\[\propto B^4V^2C^2Q₀/T_{sys}^2 \]

About to Submit (Mr. Jinsu Kim et al.)

About to Submit (Mr. Jinsu Kim et al.)

Scan Rate (Arb.) \(\propto B^4V^2C^2Q₀/T_{sys}^2 \)
Commissioning Run Parameters

- Cavity Volume: 1.5 L
- Average Magnetic Field: 6.9 T
- Q Factor: 500,000
- JPA Gain: 17 dB
- HEMT Gain: 65 dB
- Tuning Range: 2.282 - 2.294 GHz
- Coupling Constant: 2.8 – 3.8
- Cavity Temperature: 100 mK
- System Noise: 300 mK
Commissioning Run

- Commissioning run is successfully finished.
 - Period: (2021) Feb 10th 19:30 ~ Feb 15th 14:30
 - Experiment Parameters
 - JPA Noise Measurement (Every 1 MHz)
 - NA (Span 50 kHz, IFBW 100 Hz, 501 points): \(Q_L, \beta\), Every 20 steps
 - SA (60 sec, Span 100 kHz, RBW 100 Hz, 1000 points)
 - Cavity Tuning (5 kHz), JPA Tuning (17 dB Gain, Every 10 times)

![Diagram of Center Frequency vs. Date]

![Diagram of Unloaded Quality Factor vs. Resonant Frequency (Hz)]
Plan for Improving 2.3 GHz ReBCO Cavity

➢ Next Version Cavity

- Quality Control of Tapes (targeting $Q_0 \sim 1,000,000$)

- Cavity Temperature Reduction: $100\text{mK} \rightarrow 50\text{mK}$
 - Brass Body \rightarrow Copper Body (Improving Thermalization)

- Defected area minimized

- Cut by Machine

- Mechanical Polishing

- Safe

- 5 – 10 um

- 300 – 400 um

- 100 um
Target Sensitivity

JPA Run Target: 2.8 KSVZ (About to Submit)

Superconducting Cavity Run Target: 1 KSVZ

HEMT Run Target: 9 KSVZ (Published)
Summary

➢ Superconducting Cavity R&D at CAPP aims to enhance axion search with a high Q factor cavity using superconductors.
➢ ReBCO is one of the most promising materials for realizing a high Q cavity in a high magnetic field.
➢ CAPP successfully developed a half-million Q factor ReBCO cavity with a 2.3 GHz resonance frequency working in an 8 T magnetic field.
➢ The commissioning run with the 2.3 GHz ReBCO cavity was successfully finished.
➢ CAPP-PACE team is now planning to take 1 KSVZ data with the next version of the 2.3 GHz ReBCO cavity.
Superconductivity in a High Magnetic Field

Gittleman & Rosenblum Model

\[\eta \dot{x} + k_p x = J \times \Phi_0 n_c. \]

\[\rho_v = \rho_{ff} \frac{1}{1 + iv_0/\nu} = \frac{B\Phi_0}{\eta} \frac{1}{1 + iv_0/\nu}. \]

\[Z_{fl} = Z(T, B) - Z(T, 0) = \Delta Z = \sqrt{2\pi v} \mu_0 \rho_v. \]

Lower Surface Resistance at Low Temperature

Biaxially textured ReBCO tapes has good properties for high Q cavity for axion Search
ReBCO Film at mK temperature

➢ Surface Resistance Study

Anti-ferromagnetism (AFM)
Gd Atom Spins
Néel Temperature ~ 2.2 K

\[R_{s}, 0 \text{ T, 100 mK, 10.18 GHz} \approx 1e-5 \]
\[R_{s}, 0 \text{ T, 100 mK, 2.3 GHz} \approx 5.1e-7 \]
\[Q_{\text{idealBBQ, 100 mK}} \approx 7.83e8 \]
Surface Resistance Study

\[Q_{\text{add}} \approx 600,000 \]

\[4.2 \text{ K: } Q \approx 530,000 \]

\[Q_{\text{ReBCO}}, 4.2 \text{ K} \approx 4,500,000 \]

\[Q_{\text{idealBBQ}}, 0 \text{ T}, 4.2 \text{ K} \approx 3,200,000 \]
Cavity Q Factor Analysis

➢ Surface Resistance Study

ReBCO loss can be reduced by additional pinning center (APC). Ex) Fujikura APC, THEVA APC

Additional loss can be reduced by improved delamination, and polishing tapes mechanically.

\[Q_{\text{ReBCO}} \sim 3,000,000 \] at 8 T

\[Q_{\text{add}} \sim 600,000 \]