16th Patras Workshop on Axions, WIMPs and WISPs

Center for Axion and Precision Physics Research

DFSZ axion definitive searches at IBS/CAPP

ANDREW KUNWOO YI, ON BEHALF OF THE CAPP-12TB EXPERIMENT KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY AND IBS/CAPP JUNE 17TH, 2021

CAPP-12TB Experiment Overview

The CAPP-12TB experiment is a **DFSZ-sensitive** axion haloscope search for the mass range $3.3 - 12.4 \mu eV (0.8 - 3.0 \text{ GHz})$

Dilution Refrigerator 1.3 mW cooling power @ 100 mK Reaches **55 mK with load @ 12 T**

Superconducting magnet Center field **12 T @ 4.2 K** Bore diameter of 320 mm

Resonant Cavity Copper tuning rod ID 262 mm, **Q**₀ ~ **100,000**

Josephson Parametric Amplifier Several JPAs within tuning range Noise temperature **100 – 200 mK**

Dilution Refrigerator

Wet type dilution fridge from Leiden Cryogenics

First arrived in July 2019

Dilution Refrigerator

The base temperature reached 5.4 mK without any load

The cavity reaches **30 mK** when mounted without magnetic field

Without load (Mixing plate)

Cavity temperature when mounted

Superconducting Magnet

Magnet from Oxford Instruments

The magnet has a big bore with a diameter of 320 mm and stores approximately 5.6 MJ energy First arrived in March 2020, assembled August 2020 (delayed due to COVID-19)

The magnet

Dewar (3 m tall!)

Magnet inserted in dewar at LVP Hall

Superconducting Magnet

The magnet successfully reached 12 T and operates in both driven and persistent modes

Reliquefier installed to save liquid helium (liquefaction rate is 80 L/day)

12 T shown in Magnet (T) for both driven (left) and persistent (right) mode

Reliquefier in operation

Superconducting Magnet

The dilution fridge has been tested under the maximum magnetic field of 12 T

The cavity cools down to 55 mK at 12 T

Magnet and fridge tested together

Cavity temperature at 12 T

CAPP-12TB Cavity

Copper cavity with a copper tuning rod (Volume: 30 L)

Frequency range: 0.99 – 1.19 GHz

Tuning rod moves about the axle. **Frequency increases towards center** Rotation angle defined to increase when rotating counterclockwise Tuning rod has 0.5 mm **gap** to ensure movement (not to scale in figure)

TM₀₁₀—like modes are used for the experiment for their high *C* (form factor) Closest to cavity walls $v_c : 0.99 \text{ GHz}$ $Q_L: 35700 (\text{low } T)$ $C = \frac{\left|\int_V d^3x \ \vec{E} \cdot \vec{B}\right|^2}{B_0^2 V \int_V d^3x \varepsilon_r |\vec{E}|^2}$

Cavity Design Using COMSOL Simulations

The cavity geometry is simulated using COMSOL eigenfrequency studies of the RF module

There is a drop in both the loaded quality factor (Q_L) and form factor (C) of the cavity midrotation (right), which greatly reduces the axion scan rate ($\propto C^2 Q_L$)

Mode mixings found in cavity simulations

"Mode mixings" occur due to capacitive effects in the gap between the copper tuning rod and cavity endcap

Orthogonal TE/TM modes are perturbed and both modes coexist at the same frequency

when using TM_{010} -like modes (points in red)

Resolving the mode mixing problem

Placing a dielectric insert in the cavity changes the mode mixing region

Previously unscannable frequencies are now available by rotating in the opposite direction

Mode mixings are now at different frequencies

350

Empty cavity measurements

The empty cavity has an unloaded quality factor (Q_0) of 160,000 at 4 K

Resonant frequency / Quality factor of empty cavity down to 4 K

Tuning mechanism

The cavity is tuned using a series of gears connected to a piezo driven rotator

Gears multiply force from piezo to provide enough force to rotate the tuning rod

Various configurations under test to ensure a stable tunable mechanism at low temperatures

Cavity response over tuning

The unloaded quality factor of the cavity is over 100,000 outside of mode mixing regions at 4 K

Cavity scans are done in a full, 360 degrees rotation

Instability in quality factor due to ambient vibrations

16TH PATRAS WORKSHOP

RF Chain and JPA operation

RF chain has been fully implemented in system

Multiple JPAs will be used to cover the full range (0.99 – 1.19 GHz)

A JPA with the working range 1.09 - 1.11 GHz is currently installed (T_n measured with Y-factor method in-situ using a noise source)

Noise temperature (T_n) of full chain for current JPA

RF Chain schematic

Outlook of the CAPP-12TB Experiment

Target frequency range (at DFSZ sensitivity)

First phase 0.99 – 1.19 GHz (4.10 – 4.92 μeV)

Scan Rate: **410 MHz/yr** (SNR = 5) Benchmark parameters below

B	V	С	Q_L	T _S
12 T	30 L	0.52	36000	250 mK

Full scan range 0.8 – 3.0 GHz (3.3 – 12.4 μeV)

The CAPP-12TB experiment will start taking data for the first phase this year

Summary & Future plans

All components of the experiment have progress and are currently being worked on

The CAPP-12TB cavity currently is configured to scan the 0.99 – 1.19 GHz with an asymmetric design to avoid mode mixings

The dilution refrigerator can cool down the cavity to 55 mK with the superconducting magnet at 12 T

The cavity signal is amplified with an RF chain that includes nearly quantum-noise-limited JPAs that operate within the tuning range

The CAPP-12TB experiment is planning to take data within this year