ORGAN: State of Play & Future Plans

Ben McAllister, Aaron Quiskamp, Graeme Flower, Catriona Thomson, Will Campbell, Cindy Zhao, Maxim Goryachev, Eugene Ivanov, Michael Tobar
Overview

- ORGAN introduction
- Design considerations
- Photon counting
- Status and run plan
ORGAN: Axion Detection

• High mass axion haloscope
ORGAN: Axion Detection

- High mass axion haloscope
- Axion-photon conversion in resonant cavity
ORGAN: Axion Detection

- High mass axion haloscope
- Axion-photon conversion in resonant cavity
ORGAN: Axion Detection

- High mass axion haloscope
- Axion-photon conversion in resonant cavity

\[\hbar \omega_a \approx m_a c^2 + \frac{1}{2} m_a v_a^2 \]
ORGAN: Axion Detection

- High mass axion haloscope
- Axion-photon conversion in resonant cavity

\[\hbar \omega_a \approx m_a c^2 + \frac{1}{2} m_a v_a^2 \]
ORGAN: Axion Detection

• Oscillating Resonant Group AxioN Experiment
ORGAN: Axion Detection

• Oscillating Resonant Group AxioN Experiment
• Mass range of interest – 60-200 micro-eV
ORGAN: Axion Detection

- Oscillating Resonant Group AxioN Experiment
- Mass range of interest – 60-200 micro-eV
- Motivations:
 - SMASH model
 - Josephson Junction results
 - High mass range relatively unexplored
ORGAN: Axion Detection

• Critical research areas:
 • Tunable resonators
ORGAN: Axion Detection

• Critical research areas:
 • Tunable resonators
 • Low noise amplification
ORGAN: Axion Detection

• Critical research areas:
 • Tunable resonators
 • Low noise amplification
 • Data acquisition and analysis
ORGAN Sensitivity Considerations

- Haloscope scan rate:

\[
\frac{df}{dt} \propto \frac{1}{\text{SNR}_{\text{goal}}^2} \frac{g_{a \gamma \gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}
\]
ORGAN Sensitivity Considerations

- Haloscope scan rate:

\[
\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a-\gamma \gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}
\]

- Three aspects to this:
ORGAN Sensitivity Considerations

- Haloscope scan rate:

\[
\frac{df}{dt} \propto \frac{1}{SNR^2_{\text{goal}}} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}
\]

- Three aspects to this:
 - Magnet/dilution fridge
ORGAN Sensitivity Considerations

- Haloscope scan rate:

\[
\frac{df}{dt} \propto \frac{1}{SNR_{\text{goal}}^2} \frac{g^4_{a\gamma\gamma} B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}
\]

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design
Haloscope scan rate:

\[
\frac{df}{dt} \propto \frac{1}{\text{SNR}_{\text{goal}}^2} \frac{g_{\alpha\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}
\]

Three aspects to this:
- Magnet/dilution fridge
- Resonator design
- Amplifier noise temperature
Haloscope scan rate:

\[
\frac{df}{dt} \propto \frac{1}{SNR_{\text{goal}}^2} \frac{g_{a-\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L/Q_a}{m_a^2 (k_B T_n)^2}
\]

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design
 - Amplifier noise temperature
- We can’t really do anything about the rest of it…
ORGAN Dilution Refrigerator

- New dedicated dilution refrigerator arrived! (Nov 2019)
ORGAN Dilution Refrigerator

- New dedicated dilution refrigerator arrived! (Nov 2019)

- Equipped with 12.5 T magnet
ORGAN Sensitivity Considerations

- Haloscope scan rate:
 \[
 \frac{df}{dt} \propto \frac{1}{\text{SNR}_{\text{goal}}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}
 \]

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design
 - Amplifier noise temperature

- We can’t really do anything about the rest of it…
High Frequency Haloscopes

- Problem with standard design (TM010 mode and tuning rod)
High Frequency Haloscopes

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
High Frequency Haloscopes

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!
High Frequency Haloscopes

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!
- Increase V, keep f constant
High Frequency Haloscopes

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!
- Increase V, keep f constant
- Problem: lose form factor rapidly owing to field variations
High Frequency Haloscopes

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!
- Increase V, keep f constant
- Problem: lose form factor rapidly owing to field variations

$$C = \frac{\left| \int dV_c \vec{E}_c \cdot \hat{z} \right|^2}{V \int dV_c \epsilon_r |E_c|^2}.$$
High Frequency Haloscope - Dielectrics

- Idea: Use dielectrics to alter field structure and thus boost form factor
High Frequency Haloscope - Dielectrics

- Idea: Use dielectrics to alter field structure and thus boost form factor

\[C = \frac{\left| \int dV_c \vec{E}_c \cdot \vec{z} \right|^2}{V \int dV_c \epsilon_r \left| E_c \right|^2}. \]
High Frequency Haloscope - Dielectrics

- Idea: Use dielectrics to alter field structure and thus boost form factor

\[C = \frac{\left| \int dV_c \vec{E}_c \cdot \vec{z} \right|^2}{V \int dV_c \varepsilon_r |E_c|^2}. \]

- Dielectric materials suppress electric field
- Reduce the electric field where there are out of phase field lobes
High Frequency Haloscope - Dielectrics

- Idea: Use dielectrics to alter field structure and thus boost form factor

\[C = \frac{\left| \int \frac{dV_c}{V} \vec{E}_c \cdot \vec{z} \right|^2}{\int dV_c \epsilon_r |E_c|^2}. \]

- Dielectric materials suppress electric field
- Reduce the electric field where there are out of phase field lobes
- Proposed here:

Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes

Ben T. McAllister, Graeme Flower, Lucas E. Tobar, and Michael E. Tobar
Phys. Rev. Applied 9, 014028 – Published 26 January 2018
The DBAS Method in WGM Modes

• Take a higher order azimuthal TM mode and make it axion sensitive by placing dielectric in out of phase regions.

• Result \rightarrow decreased E_z field in those regions \rightarrow increase in C
The DBAS Method in WGM Modes

- Take a higher order azimuthal TM mode and make it axion sensitive by placing dielectric in out of phase regions.

- Result \rightarrow decreased E_z field in those regions \rightarrow increase in C

![Graphs showing TM410 mode](image-url)
The DBAS Method in WGM Modes

- Take a higher order azimuthal TM mode and make it axion sensitive by placing dielectric in out of phase regions.

- Result \rightarrow decreased E_z field in those regions \rightarrow increase in C

![Graphs and diagrams illustrating the change in electric field and mode shapes before and after DBAS method application.](image-url)
4 Sapphire wedges FEM

Built-in tuning → 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.
4 Sapphire wedges FEM

Built-in tuning → 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.
4 Sapphire wedges FEM

Built-in tuning → 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.
4 Sapphire wedges FEM

Built-in tuning \rightarrow 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.

Dielectric-Boosted Sensitivity to Cylindrical Azimuthally Varying Transverse-Magnetic Resonant Modes in an Axion Haloscope

Aaron P. Quiskamp, Ben T. McAllister, Gray Rybka, and Michael E. Tobar
Phys. Rev. Applied 14, 044051 – Published 27 October 2020
ORGAN Sensitivity Considerations

- Haloscope scan rate:

\[
\frac{df}{dt} \propto \frac{1}{SNR^2_{\text{goal}}} \frac{g_{a\gamma\gamma}^A B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}
\]

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design
 - Amplifier noise temperature

- We can’t really do anything about the rest of it…
SPCs for Axion Haloscopes

- Single Photon Detection is superior to SQL linear amplification under the right conditions
SPCs for Axion Haloscopes

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K
SPCs for Axion Haloscopes

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K
- Ratio of SQL linear amp to SPD noise power:

\[
\frac{P_\ell}{P_{sp}} = \frac{\bar{n} + 1}{\sqrt{\bar{n}}} \sqrt{\frac{\Delta \nu_a}{\eta \Gamma}}
\]
SPCs for Axion Haloscopes

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K
- Ratio of SQL linear amp to SPD noise power:

\[
\frac{P_\ell}{P_{sp}} = \frac{\tilde{n} + 1}{\sqrt{\tilde{n}}} \sqrt{\frac{\Delta \nu_\alpha}{\eta \Gamma}}
\]

- For above parameters, with efficiency of 0.9: SQL about 50 times noisier
SPCs for Axion Haloscopes

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K
- Ratio of SQL linear amp to SPD noise power:
 \[
 \frac{P_\ell}{P_{sp}} = \frac{\bar{n} + 1}{\sqrt{\bar{n}}} \sqrt{\frac{\Delta \nu_a}{\eta \Gamma}}
 \]

- For above parameters, with efficiency of 0.9: SQL about 50 times noisier
- If we lower the temperature this ratio can become order of thousands
Single Photon Counters

• We want single photon counters in the ~10s of GHz range
Single Photon Counters

- We want single photon counters in the ~10s of GHz range
- Not a lot…but a few options
Single Photon Counters

• We want single photon counters in the ~10s of GHz range
• Not a lot…but a few options
• Currently exploring current-biased Josephson junctions
Single Photon Counters

- We want single photon counters in the ~10s of GHz range
- Not a lot…but a few options
- Currently exploring **current-biased Josephson junctions**
- Basic idea – photon kicks junction into voltage state
Single Photon Counters

• We want single photon counters in the ~10s of GHz range
• Not a lot…but a few options
• Currently exploring **current-biased Josephson junctions**
• Basic idea – photon kicks junction into voltage state
Single Photon Counters

- Design is non-trivial
Single Photon Counters

- Design is non-trivial
Single Photon Counters

- Design is non-trivial

- Initial design of 25 GHz+ detector
Single Photon Counters

- Have some (15 GHz) samples to test from Chalmers
Single Photon Counters

- Have some (15 GHz) samples to test from Chalmers
Single Photon Counters

- Have some (15 GHz) samples to test from Chalmers
- In the dilution fridge right now
- Watch this space
ORGAN Sensitivity Considerations

- Haloscope scan rate:

\[\frac{df}{dt} \propto \frac{1}{SNR_{\text{goal}}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_{a}^2 Q_L Q_a}{m_a^2 (k_B T_n)^2} \]

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design
 - Amplifier noise temperature

- We can’t really do anything about the rest of it…
ORGAN: Run Plans

• Planned runs in coming years
ORGAN: Run Plans

• Planned runs in coming years

Phase 1:
Standard TM010 Tuning
Rod Resonators

Phase 2:
Novel Dielectric Resonators
Better Amplifiers
ORGAN: Run Plans

• Planned runs in coming years

Phase 1:
Standard TM010 Tuning
Rod Resonators

Phase 2:
Novel Dielectric Resonators
Better Amplifiers

Less optimistic:
HEMT or
SQL Linear Amplifiers
ORGAN: Run Plans

• Planned runs in coming years

Phase 1:
Standard TM010 Tuning
Rod Resonators

Phase 2:
Novel Dielectric Resonators
Better Amplifiers

Less optimistic:
HEMT or
SQL Linear Amplifiers

More optimistic:
Efficient GHz SPC
ORGAN: Run Plans

- Planned runs in coming years

Phase 1a underway

Less optimistic: HEMT or SQL Linear Amplifiers

More optimistic: Efficient GHz SPC
ORGAN: Phase 1a

- TM010 mode with single tuning rod
- HEMT Amplifier
- ~15 – 16 GHz
ORGAN: Phase 1a

• TM010 mode with single tuning rod
• HEMT Amplifier
• ~15 – 16 GHz
• Expected results later this year
• Testing ALP Cogenesis models
ORGAN: Phase 1a

- TM010 mode with single tuning rod
- HEMT Amplifier
- ~15 – 16 GHz
- Expected results later this year
- Testing ALP Cogenesis models

Aaron Quiskamp, PhD Student
ORGAN: Phase 1b

• Expected to commence late 2021
• Currently prototyping dielectric wedge resonator
ORGAN: Phase 1b

• Expected to commence late 2021
• Currently prototyping dielectric wedge resonator
ORGAN: Phase 2

• Commencing 2022+
• Broken into 5 GHz chunks
ORGAN: Phase 2

- Commencing 2022+
- Broken into 5 GHz chunks
- Ideally employ SPCs
- Multiple cavity arrays
ORGAN: Phase 2

- Commencing 2022+
- Broken into 5 GHz chunks
- Ideally employ SPCs
- Multiple cavity arrays
Conclusion

• ORGAN:
 • High mass axion haloscope
 • 2021 commencement
 • Two phases:
 • Short, targeted scans with existing equipment
 • Longer, broader scans with new technology

• Quantum Sensing
 • Testing a few SPC concepts for integration