

ORGAN: State of Play & Future Plans

Ben McAllister, Aaron Quiskamp, Graeme Flower, Catriona Thomson, Will Campbell, Cindy Zhao, Maxim Goryachev, Eugene Ivanov, Michael Tobar

Australian Government Australian Research Council

Australian National University

Overview

- ORGAN introduction
- Design considerations
- Photon counting
- Status and run plan

• High mass axion haloscope

- High mass axion haloscope
- Axion-photon conversion in resonant cavity

- High mass axion haloscope
- Axion-photon conversion in resonant cavity

- High mass axion haloscope
- Axion-photon conversion in resonant cavity

- High mass axion haloscope
- Axion-photon conversion in resonant cavity

• Oscillating Resonant Group AxioN Experiment

- Oscillating Resonant Group AxioN Experiment
- Mass range of interest 60-200 micro-eV

- Oscillating Resonant Group AxioN Experiment
- Mass range of interest 60-200 micro-eV
- Motivations:
 - SMASH model
 - Josephson Junction results
 - High mass range relatively unexplored

- Critical research areas:
 - Tunable resonators

- Critical research areas:
 - Tunable resonators
 - Low noise amplification

- Critical research areas:
 - Tunable resonators
 - Low noise amplification
 - Data acquisition and analysis

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}$$

• Haloscope scan rate:

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}$$

• Three aspects to this:

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}$$

- Three aspects to this:
 - Magnet/dilution fridge

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_I Q_a}{m_a^2 (k_B T_n)^2}$$

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}$$

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design
 - Amplifier noise temperature

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_I Q_a}{m_a^2 (k_B T_n)^2}$$

- Three aspects to this:
 - Magnet/dilution fridge
 - Resonator design
 - Amplifier noise temperature
- We can't really do anything about the rest of it...

ORGAN Dilution Refrigerator

• New dedicated dilution refrigerator arrived! (Nov 2019)

ORGAN Dilution Refrigerator

• New dedicated dilution refrigerator arrived! (Nov 2019)

• Equipped with 12.5 T magnet

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}$$

- Three aspects to this:

 - Resonator design
 - Amplifier noise temperature
- We can't really do anything about the rest of it...

• Problem with standard design (TM010 mode and tuning rod)

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!
- Increase V, keep f constant

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!
- Increase V, keep f constant
- Problem: lose form factor rapidly owing to field variations

- Problem with standard design (TM010 mode and tuning rod)
- Haloscope figure of merit scales down by $V^2 \rightarrow f^6$
- Potential solution: Use higher order modes!
- Increase V, keep f constant
- Problem: lose form factor rapidly owing to field variations

$$\mathbf{C} = \frac{\left|\int dV_c \vec{E_c} \cdot \vec{\hat{z}}\right|^2}{V \int dV_c \epsilon_r \mid E_c \mid^2}.$$

Mode	Form Factor
TM010	0.69
TM020	0.13
TM030	0.05

• Idea: Use dielectrics to alter field structure and thus boost form factor

• Idea: Use dielectrics to alter field structure and thus boost form factor

$$\mathbf{C} = \frac{\left| \int dV_c \vec{E_c} \cdot \vec{\hat{z}} \right|^2}{V \int dV_c \epsilon_r \mid E_c \mid^2}.$$

• Idea: Use dielectrics to alter field structure and thus boost form factor

$$\mathbf{C} = \frac{\left| \int dV_c \vec{E_c} \cdot \vec{\hat{z}} \right|^2}{V \int dV_c \epsilon_r \mid E_c \mid^2}.$$

- Dielectric materials suppress electric field
- Reduce the electric field where there are out of phase field lobes

• Idea: Use dielectrics to alter field structure and thus boost form factor

$$\mathbf{C} = \frac{\left| \int dV_c \vec{E_c} \cdot \vec{\hat{z}} \right|^2}{V \int dV_c \epsilon_r \mid E_c \mid^2}.$$

- Dielectric materials suppress electric field
- Reduce the electric field where there are out of phase field lobes
- Proposed here:

Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes

Ben T. McAllister, Graeme Flower, Lucas E. Tobar, and Michael E. Tobar Phys. Rev. Applied **9**, 014028 – Published 26 January 2018

The DBAS Method in WGM Modes

- Take a higher order azimuthal TM mode and make it axion sensitive by placing dielectric in out of phase regions.
- Result \rightarrow decreased E_z field in those regions \rightarrow increase in C

The DBAS Method in WGM Modes

- Take a higher order azimuthal TM mode and make it axion sensitive by placing dielectric in out of phase regions.
- Result \rightarrow decreased E_z field in those regions \rightarrow increase in C

The DBAS Method in WGM Modes

- Take a higher order azimuthal TM mode and make it axion sensitive by placing dielectric in out of phase regions.
- Result \rightarrow decreased E_z field in those regions \rightarrow increase in C

4 Sapphire wedges FEM

Built-in tuning \rightarrow 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.

4 Sapphire wedges FEM

Built-in tuning \rightarrow 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.

4 Sapphire wedges FEM

Built-in tuning \rightarrow 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.

10

11

12

Frequency (GHz)

13

1.2

4 Sapphire wedges FEM

Built-in tuning \rightarrow 2-wedges remain stationary, while the other 2 are allowed to move relative to the stationary ones.

13

Dielectric-Boosted Sensitivity to Cylindrical Azimuthally Varying Transverse-Magnetic Resonant Modes in an Axion Haloscope

Aaron P. Quiskamp, Ben T. McAllister, Gray Rybka, and Michael E. Tobar Phys. Rev. Applied **14**, 044051 – Published 27 October 2020

More

Eigle And the second se

ORGAN Sensitivity Considerations

• Haloscope scan rate:

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}$$

- Three aspects to this:

 - Resonator design
 - Amplifier noise temperature
- We can't really do anything about the rest of it...

• Single Photon Detection is superior to SQL linear amplification under the right conditions

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K
- Ratio of SQL linear amp to SPD noise power:

$$\frac{P_{\ell}}{P_{sp}} = \frac{\bar{n}+1}{\sqrt{\bar{n}}} \sqrt{\frac{\Delta\nu_a}{\eta\Gamma}}$$

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K
- Ratio of SQL linear amp to SPD noise power:

$$\frac{P_{\ell}}{P_{sp}} = \frac{\bar{n}+1}{\sqrt{\bar{n}}} \sqrt{\frac{\Delta\nu_a}{\eta\Gamma}}$$

• For above parameters, with efficiency of 0.9: SQL about 50 times noisier

- Single Photon Detection is superior to SQL linear amplification under the right conditions
- Take ORGAN as an example
 - 100 mK
 - >15 GHz
- SQL Noise ~ 1K
- Ratio of SQL linear amp to SPD noise power:

$$\frac{P_{\ell}}{P_{sp}} = \frac{\bar{n}+1}{\sqrt{\bar{n}}} \sqrt{\frac{\Delta\nu_a}{\eta\Gamma}}$$

- For above parameters, with efficiency of 0.9: SQL about 50 times noisier
- If we lower the temperature this ratio can become order of thousands

• We want single photon counters in the ~10s of GHz range

- We want single photon counters in the ~10s of GHz range
- Not a lot...but a few options

- We want single photon counters in the ~10s of GHz range
- Not a lot...but a few options
- Currently exploring current-biased Josephson junctions

- We want single photon counters in the ~10s of GHz range
- Not a lot...but a few options
- Currently exploring current-biased Josephson junctions
- Basic idea photon kicks junction into voltage state

- We want single photon counters in the ~10s of GHz range
- Not a lot...but a few options
- Currently exploring current-biased Josephson junctions
- Basic idea photon kicks junction into voltage state

• Design is non-trivial

• Design is non-trivial

• Design is non-trivial

• Initial design of 25 GHz+ detector

• Have some (15 GHz) samples to test from Chalmers

• Have some (15 GHz) samples to test from Chalmers

• Have some (15 GHz) samples to test from Chalmers

- In the dilution fridge right now
- Watch this space

ORGAN Sensitivity Considerations

• Haloscope scan rate:

$$\frac{df}{dt} \propto \frac{1}{SNR_{goal}^2} \frac{g_{a\gamma\gamma}^4 B^4 C^2 V^2 \rho_a^2 Q_L Q_a}{m_a^2 (k_B T_n)^2}$$

- Three aspects to this:

 - Resonator design
 - Amplifier noise temperature
- We can't really do anything about the rest of it...

ORGAN: Phase 1a

- TM010 mode with single tuning rod
- HEMT Amplifier
- ~15 16 GHz

ORGAN: Phase 1a

- TM010 mode with single tuning rod
- HEMT Amplifier
- ~15 16 GHz
- Expected results later this year
- Testing ALP Cogenesis models

ORGAN: Phase 1a

- TM010 mode with single tuning rod
- HEMT Amplifier
- ~15 16 GHz
- Expected results later this year
- Testing ALP Cogenesis models

Aaron Quiskamp, PhD Student

ORGAN: Phase 1b

- Expected to commence late 2021
- Currently prototyping dielectric wedge resonator

ORGAN: Phase 1b

- Expected to commence late 2021
- Currently prototyping dielectric wedge resonator

ORGAN: Phase 2

- Commencing 2022+
- Broken into 5 GHz chunks

ORGAN: Phase 2

- Commencing 2022+
- Broken into 5 GHz chunks
- Ideally employ SPCs
- Multiple cavity arrays

ORGAN: Phase 2

- Commencing 2022+
- Broken into 5 GHz chunks
- Ideally employ SPCs
- Multiple cavity arrays

Conclusion

• ORGAN:

- High mass axion haloscope
- 2021 commencement
- Two phases:
 - Short, targeted scans with existing equipment
 - Longer, broader scans with new technology
- Quantum Sensing
 - Testing a few SPC concepts for integration

