16th Patras Workshop on Axions, WIMPs and WISPs

Ultralight vector dark matter search using KAGRA

Jun’ya Kume (U. Tokyo, RESCEU) on behalf of the KAGRA collaboration

Collaborators:
T. Fujita (WIAS, RESCEU), Y. Michimura (U. Tokyo)
S. Morisaki (Milwaukee), H. Nakatsuka (U. Tokyo, ICRR)
A. Nishizawa (U. Tokyo, RESCEU) and I. Obata (MPI)
Contents

- Ultralight vector DM and GW interferometer
- KAGRA and its auxiliary channels
- Detection pipeline
- Summary
Ultralight vector DM and GW interferometer

• Ultralight vector DM

Vast discovery space for the DM: \(10^{-22}\text{eV} \sim 10^{67}\text{eV}\)
90 orders of magnitude!!

\[
\begin{align*}
10^{-22}\text{eV} & \quad \text{Excluded...} \\
\text{eV} & \quad \text{Wave-like} \\
\text{keV} & \quad \text{Particle} \\
\text{GeV} & \quad \text{Thermally produced} \\
& \quad \text{Fermionic} \\
& \quad \text{WIMPs}
\end{align*}
\]

If non-thermally produced, \(m_{DM} \ll \text{eV}\) is allowed for bosonic field!!

→ Ultralight vector DM is well-motivated:

ex.) \(U_B(1), U_{B-L}(1)\) gauge boson
Ultralight vector DM and GW interferometer

- Ultralight vector DM

\[\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} m_A^2 A^\mu A_\mu - \epsilon_D e J^\mu_D A_\mu \]

ex.) \(D = B, B - L \)

Ultralight \(\rightarrow \) “classical wave” oscillating with \(\omega \approx m_A(1 + v^2/2) \).

\(\vec{A} = \vec{A}_0 \cos(\omega t - \vec{k} \cdot \vec{x}) \) with \(v_{\text{DM}}^{\text{local}} \approx 10^{-3}, \ k = m_A v \ll \omega \)

\(\rightarrow \) electric wave-like

Extremely sensitive measurement is required...

From equivalence principle tests
Coupling to SM: \(\epsilon_D \lesssim 10^{-23} \)

Ultralight vector DM and GW interferometer

- Ultralight vector DM

\[\mathcal{L} = -\frac{1}{4} F^{\mu \nu} F_{\mu \nu} + \frac{1}{2} m_A^2 A^\mu A_\mu - \epsilon_D e J^{\mu}_D A_\mu \]

\(\text{ex.} D = B, B - L \)

Ultralight → “classical wave” oscillating with \(\omega \approx m_A (1 + v^2/2) \).

\[\vec{A} = \vec{A}_0 \cos[\omega t - \vec{k} \cdot \vec{x}] \] with \(v_{\text{DM}}^{\text{local}} \approx 10^{-3}, k = m_A v \ll \omega \)

→ electric wave-like

Extremely sensitive measurement is required...

For \(m_{DM} \sim 10^{-14} \sim 10^{-11} \text{ eV}, \) **GW interferometer** is a good probe!!

Ultralight vector DM and GW interferometer

- DM search with GW interferometer
 “Electric” DM wave acts on test masses:
 \[\vec{F} = -\epsilon_D e Q_D \dot{A} \]

Displacement of the mirror:

\[\delta \ddot{x} \sim -\frac{\epsilon_D e Q_D}{m_A M} \dot{A}_0 \sin[\omega t - \vec{k} \cdot \vec{x}] \]

The effect of the vector field can be read off!!

→ No detection = constraint on the coupling
Ultralight vector DM and GW interferometer

- DM search with GW interferometer
 LIGO and Virgo O3 data has been analyzed.

$U_B(1)$ model:
For $m_A \sim 10^{-12} \sim 10^{-11}$ eV,
largely surpass existing limit!!

GW interferometer can be the best detector for Ultralight DM!!

LVK Collaboration, arXiv:2105.13085

“Ultralight vector dark matter search using KAGRA”

Jun’ya Kume (Univ. of Tokyo, RESCEU)
Ultralight vector DM and GW interferometer

• DM search with GW interferometer
 LIGO and Virgo O3 data has been analyzed!!

\[U_B(1) \]

For
largely surpass existing limit!!

GW interferometer can be the best detector for Ultralight DM!!

LIGO’s sensitivity is best.

LVK Collaboration, arXiv:2105.13085

“Ultralight vector dark matter search using KAGRA”
Contents

- Ultralight dark matter and GW interferometer
- KAGRA and its auxiliary channels
- Detection pipeline
- Summary
KAGRA and its auxiliary channels

- Difficulty in Ultralight DM search

GW interferometers → sensitive to the **differential motion** of the arms
But DM wave almost **commonly** affects the test mass...

\[\lambda = \frac{2\pi}{m_A v} \sim 3 \times 10^8 \text{km} \]

→ DM “signal” is significantly attenuated...
To enhance the signal, we need **asymmetric response!!**
KAGRA and its auxiliary channels

- Advantage of KAGRA in DM search (Y. Michimura et al. 2020)

Auxiliary channels:

\[\delta L_{\text{MIC}} = \delta(l_x - l_y) \]
\[\delta L_{\text{PRCL}} = \delta((l_x + l_y)/2 + l_p) \]
\[\delta L_{\text{SRCL}} = \delta((l_x + l_y)/2 + l_s) \]

<table>
<thead>
<tr>
<th></th>
<th>(L_{\text{arm}})</th>
<th>(l_x)</th>
<th>(l_y)</th>
<th>(l_p)</th>
<th>(l_s)</th>
<th>(l'_p)</th>
<th>(l'_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAGRA</td>
<td>3000</td>
<td>26.7</td>
<td>23.3</td>
<td>66.6</td>
<td>66.6</td>
<td>19.5</td>
<td>19.4</td>
</tr>
</tbody>
</table>

\[\delta L_{\text{DARM}} = \delta(L_x - L_y) \]

“Ultralight vector dark matter search using KAGRA”
Jun'ya Kume (Univ. of Tokyo, RESCEU)
KAGRA and its auxiliary channels

- Advantage of KAGRA in DM search (Y. Michimura et al. 2020)

Auxiliary channels:

\[\delta L_{\text{MICH}} = \delta(l_x - l_y) \]

\[\delta L_{\text{PRCL}} = \delta[(l_x + l_y)/2 + l_p] \]

\[\delta L_{\text{SRCL}} = \delta[(l_x + l_y)/2 + l_s] \]

Due to the **charge difference**, displacement becomes asymmetric!!

<table>
<thead>
<tr>
<th></th>
<th>(L_{\text{arm}})</th>
<th>(l_x)</th>
<th>(l_y)</th>
<th>(l_p)</th>
<th>(l_s)</th>
<th>(l'_p)</th>
<th>(l'_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAGRA</td>
<td>3000</td>
<td>26.7</td>
<td>23.3</td>
<td>66.6</td>
<td>66.6</td>
<td>19.5</td>
<td>19.4</td>
</tr>
</tbody>
</table>

\[\delta L_{\text{DARM}} = \delta(L_x - L_y) \]
KAGRA and its auxiliary channels

- Advantage of KAGRA in DM search (Y. Michimura et al. 2020)

For $U_{B-L}(1)$ model, KAGRA reaches the unexplored region!!
KAGRA and its potential application...

- Advantage of KAGRA

For $U_{B-L}(1)$ model, KAGRA

$$\frac{Q_B}{M} \approx \frac{N_B}{N_B m_n} = \frac{1}{m_n} \rightarrow 10^{-5} \text{ difference...}$$

$$\frac{Q_B - Q_L}{M} \approx \frac{N_B - N_L}{N_B} \frac{1}{m_n} \rightarrow \text{ Silica: 0.501}
\text{ Sapphire: 0.51}$$
Contents

- Ultralight dark matter and GW interferometer
- KAGRA and its auxiliary channels
- Detection pipeline
- Summary
Detection pipeline

- Signal properties
 “DM wave” → superposition of waves with various momentum

\[
\bar{A} = \sum_i A_i \bar{e}_i \cos[m_A (1 + \frac{v_i^2}{2}) t - m_A \bar{v}_i \cdot \bar{x} + \phi_i]
\]

\(v_i \sim v_{\text{DM}}^{\text{local}} \sim 10^{-3} \) (※ Standard Halo model is assumed)

Sharp spectrum with
\(f \sim m_A / 2\pi \) and \(\Delta f \sim f v_{DM}^2 \sim 10^{-6} f \)
→ DM signal is localized.
Detection pipeline

• Signal properties

“DM wave” → superposition of waves with various momentum

\[
\tilde{A} = \sum_i A_i \tilde{e}_i \cos[m_A (1 + v_i^2/2)t - m_A \vec{v}_i \cdot \vec{x} + \phi_i]
\]

\[v_i \sim v_{\text{local}} \sim 10^{-3}\] (※Standard Halo model is assumed)

Sharp spectrum with

\[f \sim m_A / 2\pi\] and \(\Delta f \sim f v_{\text{DM}}^2 \sim 10^{-6} f\)
→DM signal is localized.
Detection pipeline

- Search Method
Collect the spectra at the frequency bins: \(m_A \leq 2\pi f_k \leq m_A(1 + \kappa v_{DM}^2) \)

\[\rho = \sum \frac{4|\tilde{d}(f_k)|^2}{T_{\text{obs}}S_n(f_k)} \]

\(S_n \): Power Spectrum Density
\(T_{\text{obs}} \): Observational time

For Gaussian noise, \(\rho \) obeys \(\chi^2_{2n} \) distribution when there is no signal. (\(n \): number of the bins)
100(1 – \(\alpha \))% upper limit of \(\chi^2_{2n} \rightarrow 100\alpha\% \) FAR.
Detection pipeline

• Search Method

From the SNR ρ, 95\% upper limit of the “coupling” is obtained as

$$\int_{\rho_{obs}}^{\infty} p(\rho|\epsilon_d^{95\%}) d\rho = 0.95.$$
(When signal is present, ρ obeys non-central χ^2_{2n})

But we should care stochastic nature of DM.
(See G. P. Centers et al. 2020)
Detection pipeline

- Search Method

From the SNR ρ, 95% upper limit of the “coupling” is obtained as

$$\int_{\rho_{\text{obs}}}^{\infty} p(\rho | \epsilon_{95\%}^D) d\rho = 0.95.$$
(When signal is present, ρ obeys non-central χ^2_{2n})

But we should care stochastic nature of DM.
(See G. P. Centers et al. 2020)

→ In our pipeline, random amplitude of the wave is taken into account.

(H Nakatsuka et al. in prep)
Detection pipeline

• Towards the analysis of KAGRA data
KAGRA performed a joint observing run with GEO600 in April 2020. (referred as **O3GK**)

While the SNR $\propto T_{\text{obs}}^{1/4}$, the observation was performed for two weeks. **not so long... 😞**
(※ 1yr assumed in Y. Michimura et al. 2020)

Sufficient sensitivity of DM search is not expected with the latest data...

KAGRA collaboration

“Ultralight vector dark matter search using KAGRA”
Jun’ya Kume (Univ. of Tokyo, RESCEU)
Detection pipeline

• Towards the analysis of KAGRA data GW interferometer suffers from various noise sources.

→ Line noise mimics the “signals”.

Such false signals needs to be systematically distinguished.

Veto procedure:
✓ Sharpness of the spectrum
✓ Coincidence btw several segments

estimated sensitivity
Contents

- Ultralight dark matter and GW interferometer
- KAGRA and its auxiliary channels
- Detection pipeline in KAGRA
- Summary
Summary

• **GW interferometer** can probe the coupling between SM particles and the **Ultralight vector DM**.

• **KAGRA** probes unexplored discovery space of *e.g.* $U_{B-L}(1)$ gauge boson by making use of its **auxiliary monitor**.

• Pipeline construction is ongoing. Veto process and the formulation considering the **stochasticity** is now being developed.