# SEARCH FOR DARK MATTER AXIONS WITH **CAST-CAPP**

## **Marios Maroudas**

on behalf of the CAST Collaboration

## 16<sup>th</sup> Patras Workshop on Axions, WIMPs and WISPs

14-18/06/2021



Center for Axion and Precision **Physics Research** 

Ευρωπαϊκή Ένωση European Social Fund

**Education and Lifelong Learning** 

Co-financed by Greece and the European Union





## AXIONS



10

Radius (kpc)

20

#### Axion Characteristics:

- Pseudo-Goldstone boson
- No charge
- Small mass:  $1\mu eV < m_{\alpha} < 10meV$
- Weakly interacting
- Local density: 0.45GeV / cm<sup>3</sup>

#### Coupling to photons:

$$\mathcal{L}_{\alpha\gamma\gamma} = -g_{\alpha\gamma\gamma}\alpha\vec{E}\cdot\vec{B}$$



#### Inverse Primakoff effect:



## **AXION HALOSCOPES** a la Sikivie





## **CAST EVOLUTION**

## Axion Helioscope (Solar Axions)



# **Axion Haloscope**

(Dark Matter Axions)



## **CAST-CAPP CAVITIES**

**4** identical stainless steel tunable cavities electroplated with ~30μm of copper installed in one of the two twin bores of CAST magnet.





<u>Tuning mechanism</u>: 2 dielectric sapphire bars symmetrically placed parallel to the longitudinal sides, moving simultaneously towards the center and activated by a piezoelectric motor.



Mode of interest: TE<sub>101</sub>

5 / 17

- Frequency Range: ~4.8 5.4 GHz (660 MHz)
- Axion mass range: ~19.7 22.4 μeV



## PHASE MATCHING

Increase the sensitivity via *coherent* combination of the power outputs of each frequencymatched cavity *after* individual signal amplification.

- No phase-matching:  $SNR_N = \sqrt{N} \cdot SNR_{single}$
- With phase-matching:  $SNR_N = N \cdot SNR_{single}$

 $\lambda_{\rm deBroglie} \sim 62m$ 

- Frequency accuracy: ±10 kHz
- Amplitude accuracy: ± 0.25 dB







Data acquisition system installed on CAST magnet and allows a fast semiautonomous data-taking for 20 h / day.

- 1-min measurements
- Bandwidth = 5 MHz
- Tuning step size = 200 kHz
- Size = ~ 3 GB / file !! -

CERN Tape Archive (CTA) storage

- Daily offloading/uploading
- Daily processing
- Daily analysis

#### **ONLY** 37 instruments!



#### Transmission measurement through VNA:



#### CAST-CAPP is ALSO sensitive to transient events such as streams, mini clusters etc.



# DATA TAKING RESULTS



#### RESULTS:

**QUALITY CHECKS**:

- <u>Data-taking time</u>: 3876 h (161.5 d)
- <u>Frequency range</u>: 660.15 MHz (4.77 5.43 GHz)
- <u>Data size</u>: ~ 650 TB !!



- ✓ Phase-matching of all four cavities
- ✓ Fast resonance scanning
- Unexplored parameter space

| Nr. | Parameters           | Criteria                               |
|-----|----------------------|----------------------------------------|
| 1   | Frequency stability  | $\Delta \nu_0 < 100  \mathrm{kHz}$     |
| 2   | Amplitude variation  | $\Delta A_0 < 3 \mathrm{dB}$           |
| 3   | Quality factor       | $10^3 < Q < 4\times 10^4$              |
| 4   | Quality factor shift | $\Delta Q < 7 	imes 10^3$              |
| 5   | Frequency mismatch   | $< 20 \mathrm{kHz}$ (before)           |
| 6   | Frequency mismatch   | $< 80 \mathrm{kHz} \ (\mathrm{after})$ |
| 7   | Amplitude mismatch   | $< 1 \mathrm{dB}$                      |
| 8   | Temperature mismatch | $< 3 \mathrm{K}$                       |



Total discarded Files: (~4.72%)

Data Processing: FFT



• RBW = 50 Hz

## DATA ANALYSIS

### 1. Spectrum Flattening:

• Divide spectrum by SG filter output to remove noise baseline of processed spectra



## 2. IF interference check:

- Constant index, narrow line
- Flagged IF bins are discarded



## 3. Combining multiple spectra:

- a. Scaling of the spectra by  $P_{noise}/P_{axion}$  to get axion SNR
- b. Vertical averaging (weights by ML estimates)
- c. Normalization of bins via division by its  $\boldsymbol{\sigma}$

#### 4. Rebinned spectrum:

 Horizontal averaging of 28 adjacent bins with ML weights to increase SNR of ~ 7kHz axion

### 5. Grand spectrum:

• Convolution with expected axion signal shape in the lab frame.



Hardware Injections:

Bins

# HARDWARE AND SOFTWARE SIGNAL INJECTIONS

- Blind injection of well-defined "fake" axion signals.
- Identification from analysis + stability and calibration.
- Behavior and characteristics as expected.

Normalized power



# BUT... WHAT ABOUT AMBIENT INTENDED/UNINTENDED EMITTERS?



# BUT... WHAT ABOUT AMBIENT INTENDED/UNINTENDED EMITTERS?

## Solution A:

## Solution B:

Simultaneous measurements at the same frequency band with a second independent channel looking for ambient EMI/EMC signals in the CAST area.

Important for signal identification & characterization



Second vector spectrum analyzer connected to an omnidirectional antenna Disabling of *intervening* WLAN channels in 5GHz band of the surrounding Aps.



5.103

5.104

5.105

Frequency (GHz)

5.106

5.107

## DATA ANALYSIS – HYPOTHESIS TESTING

Target SNR =  $5 \sigma$ Noise Noise + Axion Confidence Level: 90% Target SNR Threshold Mean noise False negative Gaussian PDF False positive  $\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}\right)$ 60 outliers Threshold: 3.72 σ **Elimination Procedure:** х 40 statistical outliers (~47 expected) No EMI/EMC parasite in 2<sup>nd</sup> channel 1. 11 verified as blind signal injections Persistence during re-scanning 2. 9 verified as EMI/EMC parasites Re-scanning with different cavities 3. Tuning to different resonant mode 4. Correct axion line shape (5-7 kHz) 5. 10 Signal  $\propto$  B 6. Normalized power ( $\sigma$ ) 10<sub>0</sub> 10<sub>-3</sub> 5.103 5.104 5.105 5.106 5.107 No remaining outliers!  $10^{0}$ 10-3 External antenn

## DATA ANALYSIS - EXCLUSION PLOT









- Improve analysis results with optimization of parameters.
- Increase tuning range up to 1GHz.
- Optimizations on tuning speed & cryocontact of the cavities.
- Superconducting cavities using HTS YBCO tape on the inner surface.
- Extension of transient-signal data-taking & analysis.
- Search for signal modulations.

# **THANK YOU!**



# AXION HUNTING PERIOD IS STILL ON!!

## **BACKUP SLIDES**

## **DATA ANALYSIS**

### 3. Combining multiple spectra:



## **DATA ANALYSIS**

#### Expected axion line shape on galactic and lab frame





#### Projections to reach KSVZ limit with phase-matched cavities.

