(Halo) Scoping out the axion parameter space

Chelsea Bartram University of Washington

PATRAS 06/18/201

Can explain all the dark matter

Wave-like Dark Matter de Broglie wavelength ~100s of meters

QCD Axion

Solve the Strong CP Problem

KSVZ (Kim-Shifman-Vainshtein-Zakharov)

DFSZ (Dine-Fischler-Srednicki-Zhitnitsky)

Resonant Cavity Haloscope

$$\frac{df}{dt} \approx 543 \, \frac{\mathrm{MHz}}{\mathrm{yr}} \left(\frac{B}{7.6 \,\mathrm{T}}\right)^4 \left(\frac{V}{136 \,\ell}\right)^2 \left(\frac{Q_l}{30000}\right) \left(\frac{C}{0.4}\right) \left(\frac{C}{0.4}\right)^2 \left(\frac{W}{W}\right)^2 \left($$

 $\left(\frac{g_{\gamma}}{0.36}\right)^4 \left(\frac{f}{740\,\mathrm{MHz}}\right)^2 \left(\frac{\rho}{0.45\,\mathrm{GeV/cm^3}}\right)^2 \left(\frac{0.2\,\mathrm{K}}{\mathrm{T_{sys}}}\right)^2 \left(\frac{3.5}{\mathrm{SNR}}\right)^2$

Defined by nature

Dark Matter Density

Minimize

• System noise:

Amplifier Noise

Physical Noise

Axion Dark Matter eXperiment (ADMX)

- Built and operated at Livermore (1994-2010)
- Operating at CENPA, University of Washington (2010-Now)
- Most sensitive resonant cavity haloscope experiment. Sensitive to DFSZ axions.
- One of 3 "Gen-2" Dark Matter Projects
- Global collaboration of 11 institutions

The University Of Sheffield.

GÖTTINGEN

6/17/21

Run 1C Science Goals

 Target Frequency (Mass) Range: 800-1020 MHz (3.3—4.2 µeV) 						
 Medium Resolution and High Resolution data sets 						
 Goal of DFSZ sensitivity 	(Z	933				
 Improve quality factor. 	HM) /	894				
 Improved understanding and operation of quantum amplifiers. 	equenc)	856				
 Improved noise temperature. 	ЕĽ	817				
 Other upgrades: 						
 New digitizer 		739				
 Upgraded RF software 		700				
 Improved synthetic axion capabilities 						

ADMX

- Dil Fridge: Reaches
 ~100 mK
- Superconducting magnet:
 ~can reach up to 8 T
- Quantum electronics: Josephson Parametric Amplifier (JPA)
- Field cancellation coil
- Microwave cavity and electronics

ADMX-G2 Run 1C Period

- Commissioning at UW started March 2019
- October 2019 May 2021 $-> 2x g_{ayy} DFSZ$
- Fall 2021 ? —> $1x g_{ayy} DFSZ$
- Frequency Range
- 800-1020 MHz
 - Widest run period for a DFSZ search
- Typical System Noise
 - 600 mK (includes cavity->JPA attenuation)

Scanning improvements

Optimizing the JPA rebiasing

rate increase

Analysis

- Data set of > 100,000 spectra.
- Spectra are processed by removing the receiver shape
- Obtain roughly Gaussian noise centered around zero in the absence of an axion signal
- Combine individual spectra into grand spectrum and apply line-shape filter
- Search for candidates
- In general, rescan for 3 conditions
 - Too low SNR (need more data)
 - 3-sigma excess
 - Excess at DFSZ axion power or above

Persistence Checks

 Virialized axion signal is Scan persistent. RFI that comes and goes is clearly not an axion. \sim Scan Time between scans typically 2 weeks or less. Important details for high-Scan 3 res search. Distinguish between synthetic axion signals and can

real signal.

Ň

6/17/21

Synthetic Axion Detectio

Upgrades made to Synthetic Axion Generator (SAG) for Run 1C

Synthetic Axion Generator

- Extra stage of mixing/filtering to improve signal purity
- New enclosure separate from the main DAQ
- New 0-90 dB programmable attenuator for increased automation. Fully automated and integrated with dripline/lua.
- Axion line shape is simulated but not perfect. Will be improved in future runs.

SNR

(SAG))n
(SAG))

Rack Installation for Run 1C

candidate: 896.448 MHz

Synthetic Axion Detection

Check on our ability to detect axions+understanding of experiment

- Candidate Evaluation Sequence:

 - •On-off resonance test
 - Mode Test

Power (Arb)

• Field ramp (final step!)

TM010 mode TM011 mode Form Factor Simulations in HFSS

6/17/21

Run 1C Sensitivity

- Sensitive to KSVZ: 800-970 MHz
- Sensitive to DFSZ 970-1020 MHz
- Covered 2x prior frequency range

For analysis details

- Prior paper: Bartram, Chelsea, et al. "Axion dark matter experiment: Run 1B analysis details." Physical Review D 103.3 (2021): 032002.
- Results for Run 1C Forthcoming

Ongoing Higher Frequency Searches

Sidecar Cavity and Receiver Chain

- Sidecar is a small prototyping cavity that sits on top of the main cavity.
- This iteration of sidecar is testing:
 - Traveling Wave Parametric Amplifier (TWPA)
 - Clamshell cavity design
 - Piezo motors for antenna and tuning rod

These are possible features of the future data-taking operations.

Demonstration of a Axion Search with TWPA

- Benefits of TWPA include
 - Broadband gain spans several GHz.
 - Eliminates need for an additional circulator (Less loss, more space)
 - Reasonable noise performance
- ADMX Sidecar Demonstration
 - Operated TWPA for several weeks in magnetic field
 - Reasonable performance (achieved ~8 dB SNR)

- Exploring higher frequency axions
- Using squeezed state receiver
 - Phys. Rev. X 9, 021023 (2019)
- Exploring Bayesian techniques:
 - Phys. Rev. D 101, 123011 (2020)

Recent publication from earlier this year

Backes, K.M., Palken, D.A., Kenany, S.A. *et al.* A quantum enhanced search for dark matter axions. *Nature* **590**, 238–242 (2021). https://doi.org/10.1038/ s41586-021-03226-

HAYSTAC

Fine Tuning Linear Stage Coarse Tuning Rotary Stage Fine Tuning Rod Upper Coarse Tuning Wheel Upper Bearing ~96 cm Cavity Coarse Tuning Rod Axle Critically Coupled Antenna Antenna Actuator

4-cavity array

4-cavity array planned for **University of Washington**

- 1.4-2.2 GHz
- Amplitude-combine cavities in phase for improved SNR.
 - Scan rate ~ (N)²: N cavities in phase allows factor of N increase in scan rate relative to power combining after the fact
 - Setup has common rotor with coarse tuning rods.
 - Fine-tuning done by perturbing fields with sapphire mounted to linear stage.

ADMX Extended Frequency Range (EFR)

Tuning rod is mounted to arms outside of array

Tuning rod swung into position

system

2-4 GHz prototype cavity assembly at University of Florida Cylindrical cavity formed from two clamshell halves

Array with fully assembled tuning

Possibly ~18 cavities Simulations underway

9.4 T MRI Magnet at UIUC

- Scan rate goes as $B^4 = High$ field critical for future axion searches.
- Scan rate goes as $V^2 = Large$ volume critical for future axion searches.
- ADMX Collaboration plans to use large-bore 9.4 T magnet currently at UIUC.
- Room for R&D work in this magnet as well!

ADMX Extended Frequency Range (EFR)

New Features

- Horizontal magnet bore
- Extra modularity: cavity electronics are separate from magnet bore
- Large magnet volume: 258 liters
- Preferred site for **ADMX-EFR: PW8 Hall** at Fermilab
- Other: Squeezing? Superconducting cavities?

(ADMX EFR Design)

Conclusions

- First pass through Run 1C excludes axion dark matter at roughly half the DFSZ coupling in the mass range of $3.2 - 4.2 \mu eV$ (780–-1010) MHz).
- Second pass through this region in the coming months will bring us to DFSZ.
- ADMX is on track to continue its search for axions. Discovery could happen at any moment!
- Progress being made towards higher frequency searches.

Acknowledgements

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory LDRD offices.

Backup Slides

Axion Haloscope

Resonant cavity axion haloscope

- Proposed by Pierre Sikivie.
- Uses the Inverse Primakoff effect.
- High quality factor → higher chance of axion to photon conversion.
- High overlap of magnetic and electric fields.

"Form Factor" $C_{010} = \frac{\left|\int dV B_{ext} \cdot E\right|}{B_{ext}^2 \left[\int dV \epsilon_r\right] E}$

$$\frac{\vec{E_a}|^2}{|\vec{E_a}|^2}$$

Red is cartoon magnetic field Blue is cartoon electric field 6/17/21

Main cavity (x4)

Piezo actuators

Theoretical Constraints

Lower bound set by size of dark matter halo size of dwarf galaxies

	eV						
10 -22	10 -18	10 -14	10 -10	10 -6	10 -2		
10 -8	10-4	1	104	10 ⁸	10 ¹²		
Hz							

Pre-inflation PQ phase transition

PDG <u>https://arxiv.org/pdf/1710.05413.pdf</u>

Adaptation of L. Winslow DPF Slide

Upper bound set by SN1987A and white dwarf cooling time

Post-inflation PQ phase transition

Demonstration of a Axion Search with TWPA

- Benefits of TWPA include
 - Broadband gain spans several GHz.
 - Eliminates need for an additional circulator to separate incoming and outgoing modes (less loss, more space for us)
 - Peaks and troughs every 50-MHz could enable new scanning and optimization strategies
 - Reasonable noise performance
- ADMX Sidecar Demonstration
 - Operated TWPA for several weeks in magnetic field
 - Reasonable performance (achieved ~8 dB SNR)
 - System noise meets expectations
 - Definitive results coming soon in paper.

6/17/21