Hidden Photon Limits: A Cookbook

Hidden/Dark photons

- New U(1) gauge boson with tiny kinetic mixing with the visible photon
- Can be non-thermally produced as a good dark matter candidate
- Very similar behaviour to axions

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + e J_{\rm EM}^{\mu} A_{\mu} \ + \frac{m_X^2}{2} \left(X^{\mu} X_{\mu} + 2 \chi X_{\mu} A^{\mu} \right) \, ,$$

Hidden Photons vs ALPs

- Key difference: HP has a polarisation!
- May be randomised or fixed depending on the production mechanism (or somewhere in-between)
- Structure formation may change this, but no detailed studies

Haloscopes for HPDM

- In principle, any axion haloscope using axion-photon mixing is sensitive to HPs
- For an example, take a cavity haloscope

$$P_{\rm cav}^{\rm DP} = \kappa \mathcal{G}^{\rm DP} V Q \rho_{\rm DM} \chi^2 m_X$$
, dark photon $P_{\rm cav}^{\rm axion} = \kappa \mathcal{G}^{\rm axion} V \frac{Q}{m_a} \rho_{\rm DM} g_{a\gamma}^2 B^2$, axion

$$\mathcal{G}^{\mathrm{DP}} = \frac{\left(\int dV \, \mathbf{E}_{\alpha} \cdot \hat{\mathbf{X}}\right)^{2}}{V_{\frac{1}{2}}^{1} \int dV \, \epsilon(\mathbf{x}) \mathbf{E}_{\alpha}^{2} + \mathbf{B}_{\alpha}^{2}},$$

$$\mathcal{G}^{\mathrm{axion}} = \frac{\left(\int dV \, \mathbf{E}_{\alpha} \cdot \mathbf{B}\right)^{2}}{VB^{2} \frac{1}{2} \int dV \, \epsilon(\mathbf{x}) \mathbf{E}_{\alpha}^{2} + \mathbf{B}_{\alpha}^{2}}.$$

Haloscopes for HP DM

- Two key differences
- HP does not need a B-field
- The polarisation direction of the HP matters
- (Usually) easy to convert between the two sensitivities

$$\chi = g_{a\gamma} \frac{B}{m_X |\cos \theta|}, \quad \cos \theta = \hat{\mathbf{X}} \cdot \hat{\mathbf{B}}.$$

Reinterpreting axion experiments

- Actually need to be very careful: many experiments use B-field vetos which people have neglected before now
- Polarisations can give a highly non-trivial time varying signal
- Timing and directional data rarely given

]	Experiment		Magnetic field [T]	Latitude [°]	Measurement time, T	Directionality	$\langle \cos^2 \theta \rangle_T^{95\%}$		
	ADMX-1	[106]	7.6	47.66	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	~0.0025		
	ADMX-2	[107]	6.8	47.66	$\mathcal{O}(\min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	ADMX-3	[109]	7.6	47.66	$\mathcal{O}(\min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	ADMX Sidecar	[108]	3.11 ^a	47.66	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	HAYSTAC-1	[110]	9	41.32	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	HAYSTAC-2	[111]	9	41.32	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	CAPP-1	[112]	7.3	36.35	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
Cavities	CAPP-2	[150]	7.8	36.35	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	CAPP-3	[151]	7.2 and 7.9	36.35	90 s	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	CAPP-3 [KSVZ]	[151]	7.2	36.35	15 hr	$\hat{\mathcal{Z}}$ -pointing	0.11		
	QUAX- $\alpha\gamma$	[113]	8.1	45.35	4203 s	$\hat{\mathcal{Z}}$ -pointing	0.0046		
	†KLASH	[152]	0.6	41.80	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.0025$		
	RBF	[114]		N	Magnetic field vet	0			
	UF	[115]		N	Magnetic field vet	0			
	ORGAN	[116]	Magnetic field veto						
	RADES	[153]	Magnetic field veto						
	ADMX SLIC-1	[154]	4.5	29.64	$\mathcal{O}(min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	~0.0975		
	ADMX SLIC-2	[154]	5	29.64	$\mathcal{O}(min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	$\sim \! 0.0975$		
LC-circuits	ADMX SLIC-3	[154]	7	29.64	$\mathcal{O}(min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	$\sim \! 0.0975$		
	ABRACADABRA	[117]	Magnetic field veto						
	SHAFT	[118]	Magnetic field veto						
Plasmas	[†] ALPHA	[155]	10	Unknown	$\mathcal{O}(ext{week})$	$\hat{\mathcal{Z}}$ -pointing	0.2-0.26		
	†MADMAX	[156]	10	53.57	$\mathcal{O}(ext{week})$	$\hat{\mathcal{Z}}$ -pointing or	0.18 or		
Dielectrics	4					\hat{N}/\hat{W} -facing	$0.49 - 0.65^{b}$		
	†LAMPOST	[36]	10	Unknown	$\mathcal{O}(\text{week})$	Any-facing	0.37–0.66		
	†DALI	[157]	9	Unknown	$\mathcal{O}(month)$	Any-facing ^c	0.38–0.66		
Dish antenna	†BRASS	[109]	1	53.57	O(100 days)	Any-facing	0.38–0.66		
Topological insulators	†TOORAD	[158]	10 ^d	Unknown	O(day)	Any-pointing	0.05–0.3		

Current HP Experiments

- Currently HP experiments make lots of different assumptions
- Some assume fixed, some random: few provide enough information in the results to properly calculate a limit for fixed polarisations

	Experiment		Latitude	Measurement	Directionality	Assumed	$\langle \cos^2 \theta \rangle_T^{95\%}$
			[°]	time, T		$\langle \cos^2 \theta \rangle_T$	
Cavities	WISPDMX	[32]	46.14	$\mathcal{O}(day)$	$(0.92\hat{\mathcal{N}} + 0.38\hat{\mathcal{W}})$ -pointing	1/3	0.079-0.081
	SQuAD	[92]	41.88	12.81 s	Unspecified	1/3	0.0025
Dielectrics	†NYU Abu Dhabi	[159]	24.45	$\mathcal{O}(day)$	$\hat{\mathcal{Z}}$ -facing	N/A	0.54-0.58
Dish antennae	Tokyo-1	[28]	35.68	29 days ^a	$\hat{\mathcal{W}}$ -facing	2/3	0.50
	Tokyo-2	[30]	36.06	$\mathcal{O}(ext{week})$	Axial, $\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -pointing	1/3	0.048-0.17
	Tokyo-3	[34]	36.13	12 hr	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -pointing or $\hat{\mathcal{Z}}$ -facing	Unspecified	0.05 or 0.47
	SHUKET	[31]	48.86	8000 s	$\hat{\mathcal{Z}}$ -pointing	1/3	0.0086
	FUNK	[33]	49.10	$\mathcal{O}(month)$	$(-0.5\hat{\mathcal{N}}-0.87\hat{\mathcal{W}}+0.28\hat{\mathcal{Z}})$ -facing	2/3	0.27
LC-circuits	DM Pathfinder	[89]	37.42	5.14 hr	$\hat{\mathcal{Z}}$ -pointing	1 ^b	0.028
	Dark E-field	[35]	38.54	3.8 hr ^c	$\hat{\mathcal{W}}$ -pointing	1/3	0.027
	Dark E-field spots	[35]	38.54	5.8 days ^d	$\hat{\mathcal{W}}$ -pointing	1/3	0.049

What should an experiment assume?

- Totally randomised is the most optimistic (just factors of 1/3 or 2/3 for $\cos^2 \theta$)
- Totally constant polarisation is the trickiest scenario
- Simplest analysis (arXiv:1201.5902) gives factors of 0.0025 or 0.0975
- Both time varying and constant signals should be considered
- How do we make our worse case scenario match the best case scenario?

HP Polarisations

How do you deal with a fixed polarisation?

Alex Millar

• Experiments are sensitive to an axis or a plane

HP Polarisations

- Earth rotates!
- Long measurements sample a cone (or analogue)
- Short measurements sample a single random direction (very bad)

Geocentric coordinates

Detector-centric coordinates

Day long measurements

- To get a sense, one can take the simplest case: measurements lasting n-days exactly
- Experiments sensitive to an axis sweep out a cone (sensitive to a plane is simply the compliment)

Day long measurements

 Need find the distribution of angles over some measurement

$$\langle \cos^2 \theta(t) \rangle_T \equiv \frac{1}{T} \int_0^T \cos^2 \theta(t) dt$$

• Depends strongly on alignment and location (basically, there is a perfect angle with the pole around 35°)

Improvement with long measurements

• Up to an order of magnitude improvement on limits for long measurements

What about for short measurements?

- Most experiments do single, short measurements
- Can be made better!
- Split each measurement into parts, and space those parts over the course of a day
- Best results: three if sensitive to an axis, two if sensitive to a plane

What about for short measurements?

- Order of magnitude improvement on coupling just from three measurements!
- Does not increase overall data taking time
- Also have to be careful of rescans

$$\frac{S}{N} \simeq \frac{S_1 + S_2}{\sqrt{2N_1}} \propto \int_0^T dt P(t) + \int_{T_{\text{wait}}}^{T_{\text{wait}} + T} dt P(t)$$

Always rescan with the same alignment

Current HP Limits

Rescaled for fixed polarisation (conservative case)

Alex Millar

• *Dark E-field assumes time varying signal so may not apply to randomly polarised HP

Future experiments

- Many more axion and HP experiments coming soon
- We should optimise scanning strategies to ensure robust limits regardless of DP scenario
- Need dedicated HP analyses!

Conclusions

- Most important message: axion experiments should do dedicated analysis, not just leave them for people to try to reinterpret them
- Polarisation can be very nontrivial: detailed timing and directional data is needed
- Can improve limits be an order of magnitude
- Effects of structure formation should be simulated

Experiment Locations

HP Polarisation

 Need find the distribution of angles over some measurement

$$\langle \cos^2 \theta(t) \rangle_T \equiv \frac{1}{T} \int_0^T \cos^2 \theta(t) dt$$

• Depends strongly on alignment and location (basically, there is a perfect angle with the pole around 35°)

