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Table 1. List of the 10 non-relativistic operators defining the e↵ective theory of the dark matter-
nucleon interaction studied in this paper. The operators Oi are the same as in Ref. [32].

interactions. Equivalently, cpi = (c0i + c1i )/2 and cni = (c0i � c1i )/2 are the coupling constants
for protons and neutrons, respectively. In this paper we restrict our analysis to isoscalar
interactions (often but improperly called “isospin-conserving” interactions), i.e., we set c1i = 0
(see Ref. [38] for an analysis of isovector couplings). The interaction Hamiltonian used
to calculate the cross section for dark matter scattering on nucleons bound in a detector
nucleus is obtained from Eq. (2.1) by replacing the point-like charge and spin operators
with the corresponding extended nuclear charge and spin-current densities, as for instance
in Eq. 27 of Ref. [32]. In this case the relative �-nucleon transverse velocity operator ~v?�N is

conveniently rewritten as ~v?�N = ~v?�T � ~v?NT [30], where the first term ~v?�T is the �-nucleus
transverse velocity operator (with matrix element equal to ~v�T � ~q/2µT , where ~v�T is the
initial �-nucleus relative velocity and µT is the �-nucleus reduced mass), and the second term
~v?NT is the transverse relative velocity of the nucleon N with respect to the nucleus center of
mass [30]. To simplify the notation and connect it to the usual notation in analyses of dark
matter experiments, we write ~v without index for the relative �-nucleus velocity ~v�T .

The di↵erential cross section for dark matter scattering on a target nucleus of mass mT

is given by
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where |MNR|2 denotes the square modulus of the non-relativistic scattering amplitude MNR

(related to the usual invariant amplitude M by M = 4m2
TMNR), and j� and jN are the

dark matter and nucleus spins, respectively. When averaged over initial spins and summed
over final spins, |MNR|2 gives a quantity Ptot proportional to the total transition probability,
which can be expressed as a combination of nuclear and dark matter response functions. In
the most general case it takes the following form
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and more in Barger et al. 2008, Fan et al. 2010, Dent et al 2015

To leading order in q and 𝑣, only O1 and O4 appear, which are the 
spin-independent and spin-dependent terms, respectively.

Effective operators for one-nucleon interactions
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To leading order in q and 𝑣, only O1 and O4 appear, which are the 
spin-independent and spin-dependent terms, respectively.

Effective operators for one-nucleon interactions

Complete for WIMPs of spin 0 and 1/2 
 

Complete for WIMPs of spin 1 after clarification
 

But WIMPs of higher spin are interesting



Anomalous multipole moments
Relativistically, higher multipole moments receive contributions 
from lower multipole moments, and any difference is called 
anomalous. Thus a particle with nonzero  moment and zero 
lower moments has an anomalous multipole moment . 

2p

2p

W bosons have charge , magnetic dipole moment 
, and electric quadrupole moment 

.  Any dipole or quadrupole moment in 
addition to these is called anomalous.

e
μW = e(1 + κ + λ)/(2mW)
QW = − e(κ − λ)/m2

W

Dirac fermions have g=2 plus an anomalous magnetic dipole moment

A spin-1 dark matter particle may have zero charge, zero dipole 
moment, and a nonzero anomalous quadrupole moment: 
quadrupolar dark matter



Molecular dark matter
For composite dark matter, the vanishing of the 
lower moments may be due to internal symmetry. 

Quadrupolar molecules like CO2, CS2, C6H6 have zero net charge, zero 
permanent dipole moment, and nonzero permanent quadrupole moment 

Octupolar molecules like CH4, CF4 have zero net charge, zero permanent 
dipole and quadrupole moments, and nonzero permanent octupole moment 
by tetrahedral symmetry

Hexadecapolar molecules like SF6, CF4 have zero net charge, zero 
permanent dipole, quadrupole and octupole moments, and nonzero 
permanent hexadecapole moment by octahedral symmetry

For dark matter, a dynamics in the dark sector may lead to dark matter molecules 
with similar high symmetry. Under interactions with very short range, no significant 
induced moments would be generated and the interactions with nucleons may be 
due to the highest permanent moment only: multipolar dark matter



WIMPs of any spin

It is possible that dark matter interacts with ordinary matter through 
high-order multipole moments  only.2p

For a permanent multipole moment , rotational considerations require that 
the spin of a dark matter particle, which may not be elementary, is .

2p

jχ ≥ p/2

(dipole , quadrupole , octupole , hexadecapole , etc)p = 1 p = 2 p = 3 p = 4

(dipole , quadrupole , octupole , hexadecapole , etc)jχ ≥ 1/2 jχ ≥ 1 jχ ≥ 3/2 jχ ≥ 2



Formalism



Only five single-nucleon (current) densities
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Building nonrelativistic interaction operators



WIMP-nucleus scattering amplitude

The scattering cross section

(further split vector form factors into transverse and longitudinal w.r.t. q)

WIMP-nucleus unpolarized scattering cross section
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WIMP-nucleus scattering

An arbitrary WIMP-nucleon interaction potential can be expanded in 
irreducible operators and multipole moments 

In position space:

In momentum space:  matrix elements between WIMP plane waves correspond to the 
Fourier transform of the position space interaction potential
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Irreducible tensors
Decomposition into irreducible tensors
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J=0 J=1 J=2

definite angular momentum J

Combine irreducible tensors using addition of angular momentum



Operator basis

O∆,s,s−1 = is−1 Si1 · · · Sis q̃i1 · · · q̃is−1(!v
+
χN )is (s ≥ 1),

O∆,s,s = is Si1 · · ·Sis q̃i1 · · · q̃is−1(
!̃q × !v+

χN )is (s ≥ 1),
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χN ) (s ≥ 0),
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OΦ,s,s+1 = is+1 Si1 · · · Sis q̃i1 · · · q̃is(!̃q · !v
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χN × !σN )/2 (s ≥ 0). (3.22)

Each operator of Eqs. (3.22) is to be multiplied by the isoscalar or isovector operator t0 or
t1 = τ3 to form Oτ

X,s,l = OX,s,ltτ .
The basis operators in Eqs. (3.22) can also be written in vector notation as follows,

where the overbrackets amount to taking the symmetric traceless part of the product of
WIMP spin matrices (in the following equation and in Tables 2–6 we use the notation !SN

and !Sχ for the nucleon and WIMP spins, respectively)
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s−1(!v+

χN × !SN · !Sχ) (s ≥ 1),

OΦ,s,s = (i!̃q · !Sχ)
s−1(!v+

χN · !Sχ) (i!̃q · !SN ) (s ≥ 1),

OΦ,s,s+1 = (i!̃q · !Sχ)
s (i!̃q × !v+

χN · !SN ) (s ≥ 0). (3.23)

The indices in the symbol of the operator OX,s,l follow the following scheme. The first
index X is the nucleon current (X = M , Ω, Σ, ∆, and Φ for the nucleon currents 1, !v+

χN ·!σN ,

!σN , !v+
χN , and !v+

χN × !σN , respectively). The second index s is the number of WIMP spin

operators !Sχ appearing in OX,s,l. This can be considered as the spin of the operator. It
ranges from s = 0 to twice the WIMP spin s = 2jχ. The third index l is the power of the
momentum exchange vector qi in the operator OX,s,l. This can be considered as the angular
momentum of the operator. A factor of i is introduced for every power of q. We include the
operator O∆,s,s+1 in our list of basis operators even if it is zero for elastic scattering because
!v+
χN · !q = 0; it may appear in inelastic scattering in which the nucleus transitions to another

energy level.
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The WIMP-nucleon interaction is a linear combination of basis operators

 

 = nuclear current

 = number of  WIMP 
spin operators 

 = power of momentum 
transfer  

𝒪X,s,l

X
s

Sχ

l
q̃ = q/mN

Table 2. Effective WIMP-nucleon operators appearing for WIMPs of spin ≥ 0.

OM,0,0 = 1 OΣ,0,1 = i!̃q · !SN

OΦ,0,1 = i!̃q × !v+
χN · !SN OΩ,0,0 = !v+

χN · !SN

Table 3. Effective WIMP-nucleon operators for WIMPs of spin ≥ 1/2.

OM,1,1 = i!Sχ · !̃q OΣ,1,0 = !Sχ · !SN

OΣ,1,1 = i!Sχ · (!̃q × !SN ) OΣ,1,2 = −(!Sχ · !̃q)(!̃q · !SN )

O∆,1,0 = !Sχ · !v+
χN O∆,1,1 = i!Sχ · (!̃q × !v+

χN )

OΦ,1,0 = !Sχ · (!v+
χN × !SN ) OΦ,1,1 = i(!Sχ · !v+

χN )(!̃q · !SN )

OΦ,1,2 = −(!Sχ · !̃q)(!̃q × !v+
χN · !SN ) OΩ,1,1 = i(Sχ · !̃q)(!v+

χN · !SN )

Table 4. Effective WIMP-nucleon operators for WIMPs of spin ≥ 1.

OM,2,2 = − (!̃q · !Sχ)2 OΣ,2,1 = i (!̃q · !Sχ)!Sχ · !SN

OΣ,2,2 = − (!̃q · !Sχ)!Sχ × !̃q · !SN OΣ,2,3 = −i (!̃q · !Sχ)2 (!̃q · !SN )

O∆,2,1 = i (!̃q · !Sχ)!Sχ · !v+
χN O∆,2,2 = − (!̃q · !Sχ)!Sχ × !̃q · !v+

χN

OΦ,2,1 = i (!̃q · !Sχ)!Sχ · !v+
χN × !SN OΦ,2,2 = − (!̃q · !Sχ)!Sχ · !v+

χN (!̃q · !SN )

OΦ,2,3 = −i (!̃q · !Sχ)2 (!̃q · !v+
χN × !SN ) OΩ,2,2 = − (!̃q · !Sχ)2 (!v+

χN · !SN )

(!̃q · !Sχ)2 = (!Sχ · !̃q)2 − 1

3
jχ(jχ + 1)q̃2 , (!̃q · !Sχ)!Sχ = 1

2

[
(!Sχ · !̃q)!Sχ + !Sχ(!Sχ · !̃q)

]
− 1

3
jχ(jχ + 1) !̃q

The relation between our operators and those defined in [25, 26] and [27] is listed in
Table 1 (see Section 6.1 for the case of WIMP spin 1). Notice that following common usage in
the WIMP dark matter community we define !q as the momentum transferred to the nucleus,
whereas [25, 26] use !q for the momentum lost by the nucleus; thus our !q and that in [25, 26]
have opposite signs. Tables 2–6 summarize the explicit forms of the effective operators for
WIMPs of spin 0, 1/2, 1, 3/2, and 2.

A general WIMP–nucleon operator OχN that is at most linear in the relative WIMP–
nucleon velocity is a linear combination of the basis WIMP–nucleon operators in Eqs. (3.22),

ÔχN =
∑

Xτs l

cτX,s,l(q) ÔX,s,l t
τ
N . (3.24)

The coefficients cτX,s,l(q) are in principle functions of the magnitude q of the momentum
transfer, determined by the Fourier transforms of the potentials in Eq. (3.8) as cτX,s,l(q) =
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The scattering cross sectionF̃ ττ ′
TX(q̃) = q̃2 F ττ ′

X (q̃), for X = ∆, Φ̃′,Φ′′,Σ′∆,Φ′′M. (5.42)

The functions Rττ ′
k

(
v+2
χT , q̃

2
)
are the WIMP response functions, given for WIMPs of any spin

by

Rττ ′
M

(
v+2
χT , q̃2

)
= v+2

χT Rττ ′
∆

(
v+2
χT , q̃

2
)
+

2jχ∑

s=0

Bjχ,sc
τ
M,s,sc

τ ′∗
M,s,sq̃

2s

Rττ ′
Φ′′

(
v+2
χT , q̃2

)
=

1

4
cτΦ,0,1c

τ ′∗
Φ,0,1q̃

2

+
1

4

2jχ∑

s=1

Bjχ,sq̃
2s−2

(
cτΦ,s,s−1 − cτΦ,s,s+1q̃

2
)(
cτ

′∗
Φ,s,s−1 − cτ

′∗
Φ,s,s+1q̃

2
)

Rττ ′
Φ′′M

(
v+2
χT , q̃2

)
= −cτΦ,0,1c

τ ′∗
M,0,0 +

2jχ∑

s=1

Bjχ,sq̃
2s−2

(
cτΦ,s,s−1 − cτΦ,s,s+1q̃

2
)
cτ

′∗
M,s,s,

Rττ ′

Φ̃′

(
v+2
χT , q̃2

)
=

2jχ∑

s=1

Bjχ,s
s+ 1

8s
q̃2s−2

(
cτΦ,s,s−1c

τ ′∗
Φ,s,s−1 + cτΦ,s,sc

τ ′∗
Φ,s,sq̃

2
)
,

Rττ ′
Σ′′

(
v+2
χT , q̃2

)
= v+2

χT Rττ ′

Φ̃′

(
v+2
χT , q̃

2
)
+

1

4
cτΣ,0,1c

τ ′∗
Σ,0,1q̃

2

+

2jχ∑

s=1

1

4
Bjχ,sq̃

2s−2
(
cτΣ,s,s−1 − cτΣ,s,s+1q̃

2
)(
cτ

′∗
Σ,s,s−1 − cτ

′∗
Σ,s,s+1q̃

2
)
,

Rττ ′
Σ′

(
v+2
χT , q̃2

)
=

1

2
v+2
χT Rττ ′

Φ′′

(
v+2
χT , q̃2

)
+

2jχ∑

s=0

1

8
Bjχ,s c

τ
Ω,s,sc

τ ′∗
Ω,s,sv

+2
χT q̃

2s

+

2jχ∑

s=1

1

8
Bjχ,s

s+ 1

s
q̃2s−2

(
cτΣ,s,s−1c

τ ′∗
Σ,s,s−1 + cτΣ,s,sc

τ ′∗
Σ,s,sq̃

2
)
,

Rττ ′
∆

(
v+2
χT , q̃2

)
=

2jχ∑

s=1

Bjχ,s
s+ 1

2s
q̃2s−2

(
cτ∆,s,s−1c

τ ′∗
∆,s,s−1 + cτ∆,s,sc

τ ′∗
∆,s,sq̃

2
)
,

Rττ ′
∆Σ′

(
v+2
χT , q̃2

)
= −

2jχ∑

s=1

Bjχ,s
s+ 1

2s
q̃2s−2

(
cτ∆,s,sc

τ ′∗
Σ,s,s−1 + cτ∆,s,s−1c

τ ′∗
Σ,s,s

)
, (5.43)

We recall that

v+2
χT = v2χT −

q2

4µ2
χT

(5.44)

(see Eq. (4.1) with !q · !v+
χT = 0) and

Bjχ,s =
s!

(2s+ 1)!!

s!

(2s − 1)!!
Kjχ,0 · · ·Kjχ,s−1 (5.45)

with

Kjχ,i = jχ (jχ + 1)−
i

2

(
i

2
+ 1

)
(5.46)
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The WIMP response functions  are complicated but calculableRττ′ 
AB(v, q)



Phenomenology



Limits on single operators

Figure 2. Present upper bounds from XENON100 [65]) on the effective operator OΦ,4,5 for jχ=2.
Central plot: upper bound on the coupling g as a function of M for mχ=1 TeV if the Wilson
coefficient cτ

Φ,4,5(q) is parameterized according to Eq. (4.5). Square markers: result of an accurate

evaluation of the bound using the full expression (4.5); solid line: curve g2/(M2 + q20)=K, where
the two constant parameters q0 and K are determined by fixing the bounds for M ! q and M " q.
Left–hand plot: upper bound on g as a function of mχ assuming cτ

Φ,4,5 # g2/q2 (long–range
interaction); Right–hand plot: lower bound on M/g as a function ofmχ assuming cτ

Φ,4,5 # g2/M2

(contact interaction).

ones (see Section 4.4). Moreover, for each effective model, a vertical line represents the
minimal value of M/g compatible to the assumption of a contact interaction, obtained by
combining M > q0 (following for each model the procedure outlined in Fig. 2) and the
perturbativity requirement g2/(4π) <1.

A first conclusion one can draw from Figs. 3 and 4 is that for all the couplings the
bound on M/g is compatible to the assumption of a contact interaction. Moreover, one
observes an anticorrelation between the value of (M/g)lim and the s parameter. This is
due to the fact that a larger value of s corresponds to stronger momentum suppression in
the expected rate and, as a consequence, to a weaker bound. More specifically, as shown
in Table 2 for a given value of s the power of the transferred momentum q ranges from
2s− 2 and 2s+ 4.

In Figs. 3– 4 the bounds on M/g span about 5 orders of magnitude, ranging from
∼ 10–20 TeV down to ∼ 90–200 MeV, The strongest constraint always corresponding to
the operator OM,0,0 and the weaker constraint corresponding to the operator OΩ,4,4. This
hierarchy is not surprising, since OM,0,0 corresponds to the standard spin–independent
interaction (scaling with the square of the nuclear mass number) with no momentum or
velocity suppression, while OΩ,4,4 is the operator with the highest momentum suppression
in our analysis (i.e. for jχ ≤ 2) among the velocity–suppressed ones (i.e. with Rττ ′

0X=0
in Eq. (3.19)). Moreover, with the exception of the case s = 0 for which only 4 op-
erators are defined, for each of the other values of s the corresponding constraints on
the M/g for the corresponding 10 operators appear to present a similar structure. Fo-
cusing for instance on s=1, the bound for OM,1,1 is the most constraining, with OΦ,1,0
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Placing limits on the ratio (mediator mass)/(coupling constant) 
 instead of the cross section allows a parallel treatment of 

interactions that vanish at zero momentum exchange .
M/g

q = 0

The coupling  associated to each operator  is . cX,s,l 𝒪X,s,l cX,s,l = g2/M2



Limits on single operators
Bounds on 

 for all 44 
operators with 
dark matter 
spin up to 2 
(coupling to 
proton only).

M/g

The coupling  
associated to each 
operator  is

. 

cX,s,l

𝒪X,s,l
cX,s,l = g2/M2

Figure 3. Most constraining lower bound on (M/g) for mχ=100 GeV and for all the 44 operators
of Eq. (3.10) with jχ ≤2, and assuming a contact interaction (cτX,s,l = g2/M2 in Eq. (4.5)). Left–
hand plot: WIMP–proton interaction; Right–hand plot: WIMP–neutron interaction. For each
operatorOX,s,l the bound assumes jχ = s/2. Filled markers: most constraining present bound from
one among the experiments analyzed in Appendix A. Open markers: estimation of the improvement
on the limits by extending the experimental energy ranges beyond the present ones, as explained
in Section 4.4. Vertical solid lines: minimal value of M/g compatible with the assumption of a
contact interaction.

coming next in order of size. This can be understood by noticing that, as shown in Ta-
ble 2, the cross section for OΦ,0,1 has the same momentum suppression as OM,1,1 and
depends on the nuclear response function W ττ ′

Φ′′ . Such nuclear response function favors
heavier elements with large nuclear shell and scales with the nuclear target similarly to
the SI interaction, so that for most isotopes it is the most sizeable among the W ττ ′

TX with
the exception of X = M [27, 28] (this holds for all the nuclear targets that we con-
sider with the exception of the semi-magic isotope 72Ge, for which W ττ ′

Φ′′ vanishes). As
far as the other operators are concerned, for X= ∆, Σ the constraint gets systematically
less stringent at growing l, as one expects due to the enhanced momentum suppression,
i.e. (M/g)lim(∆, 1, 0) > (M/g)lim(∆, 1, 1) > (M/g)lim(∆, 1, 2) and (M/g)lim(Σ, 1, 0) >
(M/g)lim(Σ, 1, 1) > (M/g)lim(Σ, 1, 2) An exception to this pattern is provided by X = Φ
for which one observes instead (M/g)lim(Φ, 1, 0) > (M/g)lim(Φ, 1, 2) > (M/g)lim(Φ, 1, 1).
One understands this inversion between (M/g)lim(Φ, 1, 1) and (M/g)lim(Φ, 1, 2) by notic-
ing that, as again shown in Table 2, OΦ,1,1 couples to W ττ ′

Φ̃′
(q) while OΦ,1,2 and OΦ,1,0

couple to W ττ ′
Φ′′ (q), with W ττ ′

Φ′′ (q̃) " W ττ ′

Φ̃′
(q̃), as already pointed out. The same pattern
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Diffraction minima
Figure 6. Nuclear structure functions W 00

M and W 00
Φ′′ for xenon as calculated in [28] as a function

of the nuclear recoil energy ER for an isoscalar interaction (τ = τ ′ = 0).

Figure 7. Expected differential rates for OΦ,4,5 calculated with the same assumptions of Fig. 5.
Left–hand plot: mχ=100 GeV; Central plot: mχ=300 GeV; Right–hand plot: mχ=1 TeV.

In light of the above discussion, heavy targets are the most suitable to search for large–
spin WIMPs, if their expected rate is driven by a large-multipole operator 1. The high
recoil energy behaviour of the spectra in Fig. 5 is at strong variance with the usual WIMP
DD paradigm, where the search for new physics is focused on the lowest–energy part of the
spectrum. Indeed, among present experiments only PICO–60, that is a threshold detector,
includes the full range of recoil energies in its analysis (although, as already explained,
F targets are only sensitive to ER <∼ 100–200 keVnr because of the cut from the velocity

1For this reason also Tungsten (W) in CRESST [70] would be an excellent target to search for high–spin

WIMPs. We did not include CRESST in our analysis because the nuclear response functions W
ττ ′

TX for
tungsten are not available in the literature.
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Expected differential rates for the operator  calculated for 
an isoscalar interaction  and dark matter spin . 

The rates are normalized to the maximum rate allowed by current 
bounds.

𝒪Φ,4,5
cp

Φ,4,5 = cn
Φ,4,5 s = 2



Explore 100keV-1MeV recoil energies?

Figure 8. Possible improved bounds on the cross section σref = c2M,4,4µ
2
χN/π for the operator

OM,4,4 from extending the XENON1T analysis to higher recoil energies. Solid (black) line: current
XENON1T limit. Dashed (red) line: possible improvement.

5 Conclusions

While most of the theoretical and experimental work on detection of particle dark matter
has been focused on dark matter particles that are elementary and have spin 0 or 1/2,
there is no compelling reason for dark matter particles to be elementary, or for their spin
to be limited to 0 and 1/2.

In the present paper we have provided a first systematic and quantitative discussion
of the phenomenology of the non–relativistic effective Hamiltonian introduced in Ref. [32]
to describe the nuclear scattering process for a WIMP of arbitrary spin jχ. To this aim we
obtained constraints from a representative sample of present direct detection experiments
assuming the WIMP–nucleus scattering process to be driven by each one of the 44 effective
couplings OX,s,l that arise for jχ ≤2. We have neglected the effect of interference among
operators, so our limits are to be interpreted as the maximal sensitivity to the interaction
strength of each operator achievable by present DM direct detection experiment.

We found that high values of the multipole parameter s, related to powers of the
momentum transfer q appearing in the scattering amplitude, can push the expected differ-
ential spectra to recoil energies ER much larger than usually assumed, with the largest part
of the signal concentrated at ER >∼ 100 keV and a peculiar structure of peaks and minima
arising when both the nuclear target and the WIMP are heavy. This phenomenology is at
strong variance with the usual WIMP DD paradigm, where the search for new physics is
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Possible improved bounds on the cross section  
for the operator  from extending the XENON1T analysis to 
recoil energies higher than 250 keV.

σref = c2
M,4,4μ2

χN /π
𝒪M,4,4

Current bound

includes XENON100 analysis 
up to 250 keV recoil energy

Possible improvement 
with higher recoil energy



More information is in the papers

• Massless mediators and mediators of any mass

• The scaling of the differential rate with the spin and angular 
momentum of each operator

• The dependence of the differential rate on the nuclear 
structure functions

• The detailed mathematical derivation of the cross section 
formulas for linear combinations of operators of any spin

• The intricacies of relative velocities, current symmetrization, 
interaction potentials in position and momentum space

• A summary of useful formulas for multipole expansions of 
nuclear currents

The papers also contain
arxiv:2008.05120, arxiv:2102.09778



Direct detection of WIMPs of any spin

It is possible that dark matter interacts with ordinary matter through 
high-order multipole moments  only (multipolar dark matter, molecular 
dark matter, anomalous high-spin dark matter, …)

2p

The cross section for scattering of high-spin dark matter off nuclei is 
complicated but calculable.

The phenomenology of direct detection of high-spin dark matter shows new 
patterns and strategies, for example more prominent diffraction peaks and 
minima, especially at higher recoil energies (100 keV - 1 MeV).


