16th Patras Workshop on Axions, WIMPs and WISPs, 14-28 June 2021

Quark Nugget models of dark matter revisited

Victor Flambaum and Igor Samsonov

Dark Matter models

Beyond the Standard Model

- WIMS
- Sterile neutrino
- Axion
- Supersymmetric particles
- ...

Standard Model based

- Black holes
- Strangelets
- Compact Composite objects
- QCD balls
- Axion quark nuggets

Compact composite objects as DM candidates

- Can be composed of SM particles (baryons, quarks), do not require new physics
- In spite of strong interaction with visible matter, such objects cannot be detected because of a small ratio of cross section to mass

- Such objects are not excluded by any dark matter
 detecting experiments and cosmological observations

Example: Strangelets

E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984)
E. Witten, Phys. Rev. D 30, 272 (1984)
A. R. Bodmer, Phys. Rev. D 4, 1601 (1971)

- Quark matter: consists of quarks not bound to baryons
- Presence of strange quark can lower the energy of such objects and make them stable
- A stable composite particle which consists of large number of up down and strange quarks - dark matter particle candidate
- Neutron stars could have a quark core with strange quarks (debated)

Axion-quark nuggets, QCD balls, Compact composite objects, etc.

- Quark matter nuggets are composed of large number of quarks surrounded by electron cloud
- Anti-quark nugget consist of large number of antiquarks, surrounded by the positron cloud
- Both quark and anti-quark nuggets amount to Dark Matter
- Assumption on ratio of abundances anti-quark nuggets : quark nuggets : baryonic matter $=3: 2: 1$
- Explains matter-antimatter asymmetry in nature: anti-matter is hidden in anti-quark nuggets
- Has radiation which may (potentially) be detected
A. R. Zhitnitsky, JCAP10, 010 (2001)

And many subsequent papers

Our goal

- To accurately consider the electron-positron annihilations in collisions of visible matter with anti-quark nuggets
- To study the radiation in such collisions and compare it with satellite observations of the
 center of our galaxy
- We consider Quark Nugget model which includes AQN as a particular case

Quark Nugget model

Quark Nugget

Anti-Quark Nugget

- Anti-QN are 1.5 more abundant
- Consist of anti-matter
- May be detected when collide with visible matter

(anti)Quark core

- May be considered as a ball or characteristic radius $\mathrm{R}=10^{-5} \mathrm{~cm}$
- Characteristic mass is of order 10 g
- Density $n_{0}(r)$ is 1.5-3 times nuclear matter density
- Baryonic charge varies $10^{23}-10^{28}$. We adapt $B=10^{24}$.
- Electric charge of quarks Z is unknown. It depends on the equation of state of the quark matter which is not known. If the quarks are in the color-flavor-locked phase, the electric charge is localized at the boundary, $\mathrm{Z}=0.3$
anti-quark core $B=10^{24}$ $R=10^{-5} \mathrm{~cm}$
$m \sim 10 \mathrm{~g}$ $\mathrm{B}^{2 / 3}$. If the quarks are in the 2CS phase, $Z \sim 0.001 \mathrm{~B}$.
- Huge negative charge of anti-quark matter attracts positrons => positron cloud

Positron cloud

- In the Thomas-Fermi model charge density $n(r)$ which may be found as a solution of Poisson equation with $n_{0}(r)$ being the quark core charge density

$$
\Delta \varphi=4 \pi e\left[n(r)-n_{0}(r)\right]
$$

- The positron density, together with the quark core charge density, create the electric field

$$
E=-\nabla \varphi
$$

- Given the positron density and the electric field, we study the annihilation probability for incident electrons, atoms and molecules.

Properties of positron cloud

Matter scattering off the Quark Nuggets

- Assume that these particles have characteristic velocities $\mathrm{v}=10^{-3} \mathrm{c}$ (virial velocities in interstellar medium)
- Problem: probability of electron-positron annihilation with emission of 511 keV photons?

Electron scattering

- Electron is repelled by the QN electric field
- Debye screening should be taken into account
- Electron has effective charge when moving through the positron cloud

$$
q_{\mathrm{eff}}=\frac{1}{3} \frac{e \varphi+2 m}{e \varphi+m}
$$

- In the non-relativistic case (far from QN core) $e \varphi$ <<m

$$
q_{\mathrm{eff}}=\frac{2}{3}
$$

Electron scattering

- Electron can approach QN core to characteristic distance $z_{\text {min }}=11-12 \mathrm{a}_{\mathrm{B}}$
- Direct annihilation cross section

$$
\sigma \approx \pi r_{e}^{2} c / v
$$

- Annihilation probability

$$
P=1-\exp \left[-2 \sigma \int_{z_{\min }}^{\infty} n(x) d x\right]
$$

$$
P \approx 10^{-9}
$$

- Thus, this process plays minor role

Hydrogen \& helium scattering

- $\mathrm{H}, \mathrm{H}_{2}, \mathrm{He}$ or He^{+}can approach quark core up to $z_{\text {ion }}=3-7 \mathrm{a}_{\mathrm{B}}$.
- Neutral atoms and molecules are attracted due to polarization potential
- Electric field ionizes these atoms and molecules, $\mathrm{E}=2-30 \mathrm{~V} / \mathrm{a}_{\mathrm{B}}$
- Proton falls on the quark core while the electron escapes

Ps formation in Hydrogen \& helium scattering

- Positronium is NOT stable at such a strong electric field. In addition, there is strong Pauli blocking at this high positron density. Positronium cannot be formed
$z_{\text {formation }}<z_{\text {Ps decay }}$

Direct positron annihilation in Hydrogen \& helium

- Cross section of direct positron annihilation on atoms $\sigma \approx Z_{\text {eff }} \pi r_{e}^{2}, 4<Z_{\text {eff }}<15$
- Probability of direct electron-positron annihilation is

$$
\begin{gathered}
P=1-\exp \left[-2 \sigma \int_{Z_{\min }}^{\infty} n(x) d x\right] \\
P \approx 10^{-5}
\end{gathered}
$$

- Only photons with 511 keV energy are emitted.
- NO photons with energies 1-20 MeV from electronpositron annihilation since there are no electrons at small z.

Our conclusions:

- Positronium atoms cannot be created in the positron cloud in the vicinity of quark core
- Electron-positron annihilation in the positron cloud cannot produce MeV -energy photons. MeV-range photons may be emitted as the bremsstrahlung radiation of proton falling on the quark core and its annihilation
- A different mechanism of emission of 511 keV photons should be explored

Alternative mechanism

- Proton collides with the quark core and annihilates
- Charge of quark core is reduced

- Temperature of positron cloud rises
- Outer positrons can "evaporate"
- Thus, (anti)quark nuggets are sources of positrons in galaxy center
- These positrons annihilate with atoms and molecules and produce 511 keV photons. Flux of these photons may be compared with INTEGRAL satellite observations.

Summary

- In collisions of Quark Nuggets with atoms and molecules the positronium cannot be created in the positron cloud close to quark core.
- Only direct electron-positron annihilation in atoms is possible, the probability is of order $P=10^{-5}$.
- Electron-positron and positron-atom collisions cannot produce photons with energies in the MeV range. However, such photons may be produced by bremsstrahlung and proton annihilation.
- However, proton can annihilate in the collision with the quark core. This reduces quark core charge and raises the temperature of the positron gas. This makes the positrons to evaporate.
- Thus, QNs may be a source of positrons which create the excess of 511 keV photons observed in the center of the galaxy.
- More details in forthcoming preprint arXiv:2106.xxxxx.

