STATUS OF BABYIAXO

Elisa Ruiz-Chóliz

Johannes Gutenberg University – Mainz On behalf of the IAXO Collaboration

16th Patras Workshop on Axions, WIMPs and WISPs 17 June 2021

Axions and axion-like particles (ALPs)

Axions and beyond

ALPs predicted as pseudo-NG bosons by many extensions of the SM

ALPs and axions couple to photons, but ALPs m_A and $g_{A\gamma}$ are not correlated: big parameter space Weakly Interacting Slim Particles (WISPs) \rightarrow cold and hot Dark Matter (DM) candidates!

Motivations

Predicted by extensions of the SM and string theory Not an *ad hoc* solution to DM Invoked to solve astrophysical observations

Astrophysical hints

- Intergalactic transparency to VHE photons
 Axion-photon conversion allows VHE travel longer distances
- Anomalous cooling of different stellar objects
 Axion emission adds an undetected cooling mechanism

Helioscope technique

Physical principle:

Enhanced layout description:

- A powerful and large dedicated magnet
- X-ray focusing optics optimized for axion spectrum
- Ultra-low background x-rays detectors

- <u>Production</u>: Primakoff effect (a-γ coupling) Thermal photons interacting with solar nuclei produce Axions
- <u>Detection</u>: Inverse Primakoff (Sikivie 1983) Axion interacting with a very strong magnetic field converts to a photon

State of the art: CAST

CERN Axion Solar Telescope

A powerful axion helioscope \rightarrow more than 18 years of experience Decommissioned prototype LHC dipole magnet \rightarrow Length = 9.3 m; Magnetic field = 9 T Solar tracking possible during sunrise and sunset (2 x 1.5 h per day)

2013-2015: IAXO pathfinder

Sunrise detector: x-ray focusing optics + Micromegas (IAXO Pathfinder)Best experimental limit on axion-photon coupling over broad axion mass range $|g_{av}| < 0.66 \times 10^{-10} [GeV^{-1}]$ (95% C.L.) [NPHYS4109]

IAXO and BabyIAXO

International AXion Observatory

- Next generation enhanced helioscope for solar axions
- Mature and state-of-the-art technology
- Purpose-built large-scale magnet
 - >300 times larger FoM than CAST magnet
 - Toroid geometry
 - 8 conversion bores of 60 cm \emptyset , ~20 m long
- 8 detection systems (XRT+detectors)
 - Scaled-up versions based on experience in CAST
 - Optics based on slumped-glass technique used in NuStar
 - Low-background techniques for detectors
- ~50% Sun-tracking time

BabyIAXO [JHEP05(2021)137]

- Technological prototype of IAXO (to be hosted at DESY)
- Relevant physical outcome (FoM ~100 times larger than CAST)
- Improvement of the IAXO baseline experimental parameters
- Collaboration growth and consolidation

Sensitivity and physics potential

Expected sensitivity to solar axions

		BabylAXO (~3y exposure)	IAXO (~бу exposure)
	$ g_{a\gamma} $ [GeV ⁻¹]	~1.5x10 ⁻¹¹ → m _a ≤ 0.02 eV	$^{5x10^{-12}}$ → m _a ≤ 0.01 eV ~10^{-11} → m _a ~ 0.01-0.25 eV
	$ g_{ae}g_{a\gamma} $ [GeV ⁻¹]		<2.5x10 ⁻²⁵ → m _a ≤ 0.01 eV
Signal-to-noise CAST improvement		10 ²	10 ⁴ - 10 ⁵

Physics potential [JCAP 06 (2019) 047]

VHE photons and anomalous cooling hints

QCD axions

CDM, and more exotic physics (relic axions, dark radiation, inflation)

BabyIAXO Magnet

Design

- 2 flat racetrack coils: 10m long; 12 strands of NbTi/Cu
- 2 bores: 0.7m diameter; vacuum & buffer gas
- Optimized layout: maximum magnetic field at bores
- Minimal risk: conservative design choices
 - Cost effective : Best use of existing infrastructure and experience at CERN
 - Prototyping approach: very close layout to that of IAXO toroidal design

Status

- Technical in-depth review of magnet design (by DESY PRC) successfully passed last year.
- Design adapted to use of an existing SC cable offered in-kind to IAXO by INR Moscow. Currently qualifying the cable for use in BabyIAXO
- Quotations being received for magnet subsystems. Almost ready to start placing orders (cryostat, cold mass,...).
- CERN contribution for BabyIAXO magnet construction

 $f_0 = \epsilon_0 \alpha^{-1/2}$

Optics technology

- Multilayer-coated segmented-glass Wolter-I optics
- Signal from the 0.7 m diameter bore focused to 0.2cm² area
- Mature technology based on NASA's NuSTAR telescopes

2 detection lines in BabylAXO

- Custom hot & cold-slumped segmented glass
 - Two techniques at the same telescope to increase the diameter and cover the bore
 - Being commissioned for BabyIAXO
 - Inner part Al-foil or segmented glass optic (NASA/LLNL/DTU/MIT/Columbia)
 - Outer part cold-slumped Willow-glass technology (INAF/DTU)
- ESA's XMM flight spare
 - Already available and compatible with BabyIAXO design
 - List for ESA operational requirements and loan agreement in preparation

BabyIAXO detectors requirements

IAXO as an observatory

Multiple and diverse detectors working at the same time

Technical requirements:

- High detection efficiency in Rol (0-10 keV)
- Very low background in Rol: < 10⁻⁷ counts keV⁻¹ cm⁻² s⁻¹
 - Use of shielding (active and pasive)
 - Radiopurity
 - Advanced event discrimination strategies

Baseline detector technology:

 Time Projection Chambers (TPC) based on the Micromegas technology after the experience of the CAST experiment.

Alternative technologies under study

• Gridpix, Metallic Magnetic Calorimeters (MMC), Transition Edge Sensors (TES) and Silicon Drift Detectors (SDD)

 $f_D = \epsilon_d b^{-1/2}$

State of the art: IAXO pathfinder - CAST

IAXO goal

 10^{-7} - 10^{-8} counts keV⁻¹ cm⁻² s⁻¹

Performance and results [JCAP12(2015)008; JCAP01(2016)034; NPHYS4149]

8 months of data-taking \rightarrow Best signal-to-noise ratio in CAST

Background level:

(1.0 ± 0.2) x 10⁻⁶ counts keV⁻¹cm⁻²s⁻¹ for [2,7] keV & all detector area

Micromegas background source understanding

Detector's figure of merit: $f_D = \epsilon_a b^{-1/2}$

Background contribut	tion	Reduction technique				
Cosmic muons and neutrons	~ 1x10 ⁻⁶ nfu	 Active vetos (scintillators+PMT/SiPM) Capture sheets (cadmium) 				
External gamma radiation	~ 1.5x10 ⁻⁶ nfu	- Passive shielding (lead)				
Internal radiation from materials (natural and cosmogenic)	~ 5x10 ⁻⁸ nfu	 Radiopure materials (mainly copper) Internal shielding 				
Radiation from target gas (Ar)	~ 1x10 ⁻⁸ nfu	- Other gas mixtures (Xe)				
* nfu = normalized flux units = counts keV ⁻¹ cm ⁻² s ⁻						

Other background reduction techniques:

- Topological information from the detector and electronics (AGET)
- Offline discrimination analysis (REST software)

Micromegas spectrum dominated by

- Cu fluorescence at 8 keV
- Ar fluorescence at 3 keV

from cosmic induced events

Background demonstration

Roadmap to demonstrate BabyIAXO target levels

Combination surface and underground measurements, simulations and experimental improvements

Tests at surface:

 Demonstrate overall background reduction strategy (B~1x10⁻⁷ nfu)

Tests underground:

 Determine intrinsic radioactivity (internal or inner shielding components) of the detector (B₀<1x10⁻⁷ nfu)

Simulations:

 Insight on individual components of the background to support experimental tests

(*) nfu = normalized flux units = counts/keV/cm²/s

(*) nfu = normalized flux units = counts/keV/cm²/s

Current status

Tests at surface UNIZAR with IAXO-D0

• Implementation of 4π muon veto.

Tests at underground with IAXO-D1

Determine part of intrinsic and cosmic induced events

Simulations

- Background might be limited by cosmic neutrons
- Hypothesis to be confirmed by IAXO-D0/IAXO-D1
- Cosmic neutron tagger is being designed and will be implemented in IAXO-D0.

REST for Physics

Software development: REST (Rare Event Searches with TPCs)

- Collaborative framework
- C++, ROOT, GEANT4, magboltz...
- <u>https://github.com/rest-for-physics</u>
- Background simulations (detectors and electronics)
- Data analysis routines
- Axion signal calculation for IAXO and BabyIAXO
- Slow control for BabyIAXO

BabyIAXO baseline detector

$f_D = \epsilon_d b^{-1/2}$

Baseline technology: Microbulk Micromegas

- Gaseous detector
 - Gas chamber with electric field
 - Primary e- from ionization drift towards the readout
 - Amplification region \rightarrow detectable signals
- Suitable for axion detection
 - Readout with high granularity
 - Good energy and position resolution
 - Low energy threshold
 - Very radiopure (low background)
 - Performance tested in CAST [JCAP12(2015)008, NPHYS4109]

• State

- New detector design: reduced drift
- New electronics design: radiopure front end cards
- Optimized lead shielding and 4π active muon veto
- Neutron tagger system

14

Other BabyIAXO detectors under study

Other technologies under study

- IAXO as a generic infrastructure for axions and ALPs physics
- and R&D of alternative detectors with different properties
 - Excellent energy resolution, energy threshold, high efficiency and ultra-pure materials
 - Improve the energy threshold \rightarrow investigation of fine structures in the axion spectrum

Post-discovery scenario

- If positive signal, low threshold + good energy resolution → possibility to determine m_a and g_{ae}
- Minimization of systematics effects and reinforcement of the claim significance

Status

- Design and material optimization ongoing in all fronts
- Background studies with different shielding configurations

Transition Edge Sensors (TES)

Metallic Magnetic

Calorimeter (MMC)

Silicon Drift Detectors (SDD)

Project tentative timeline

		2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029 +
xo	Design											
yIA	Construction											
Bab	Commissioning											
0	Vacuum phase											
LAX takir	Upgrade to gas											
aby] ata 1	Gas phase											
щĞ	Beyond-baseline											
xo	Design											
IAJ	Construction					Tentative						

Full members: Kirchhoff Institute for Physics, Heidelberg U. (Germany) | IRFU-CEA (France) | CAPA-UNIZAR (Spain) | INAF-Brera (Italy) | CERN (Switzerland) | ICCUB-Barcelona (Spain) | Petersburg Nuclear Physics Institute (Russia) | Siegen University (Germany) | Barry University (USA) | Institute of Nuclear Research, Moscow (Russia) | University of Bonn (Germany) | DESY (Germany) | Johannes Gutenberg University - Mainz (Germany) | MIT (USA) | LLNL (USA) | University of Cape Town (S.Africa) | Moscow Institute of Physics and Technology (Russia) | Max Planck Institute for Physics, Munich (Germany) | CEFCA-Teruel (Spain) | (1 more in process to join + several expression of interest)

Associate members: DTU (Denmark) | U.Columbia (USA) | SOLEIL (France) | IJCLab (France) | LIST-CEA (France)

erc

Axions and ALPs

- Hypothetical particles very well motivated by new physics
- Candidates to the DM

IAXO and babyIAXO

- Enhanced helioscopes
- To search for axions from the Sun with competitive sensitivity BabyIAXO ~ $10^{-11} |g_{a\gamma}|$ [GeV⁻¹] IAXO ~ $10^{-12} |g_{a\gamma}|$ [GeV⁻¹]

Physics potential

 QCD axions, ALPs, astrophysical hints, dark matter, more exotic physics...

Summary

BabyIAXO status

- Magnet
 - SC cable being qualified Almost ready to place orders
 - CERN backed
- Optics
 - Hybrid optics multilayer deposition tests and characterization to be published
 - ESA agreement in preparation
- Detectors

Baseline: background demonstration strategy on surface, underground and simulations

Other technologies: optimization and background studies

- To be hosted at DESY
- First physics ~ 2024

Thank you for your attention!

BACK-UP SLIDES

Axions

What are they?

Hypothetical pseudoscalar, neutral and very light elementary particle Postulated by Weinberg and Wilczek from the Peccei-Quinn theory in 1978

Where do they come from?

Elegant solution to the Strong CP problem:

CP problem

CP violating term in QCD is not forbidden... but CP violation \rightarrow neutron electric dipole moment has never been observed!

Peccei-Quinn solution

Extension of the SM \rightarrow new U(1)_{PO} symmetry spontaneously broken at hig scale f_a \rightarrow new massive pseudo-NG boson: axion!

What are their properties?

Their properties? Determined by the symmetry breaking scale $f_a \rightarrow Mass: m_a \propto \frac{1}{f_a}$; Coupling constant: $g_{ai} \propto \frac{1}{f_a}$ Natural couplings: gluons and photons Model-dependent couplings: fermions - Coupling constant: $g_{ai} \propto \frac{1}{f_a}$

Experimental searches for axions and ALPs

Based on **<u>Primakoff effect</u>**: Axion-to-photon conversion in magnetic fields

Detection technique Helioscopes		Haloscopes	Light Shining Through Walls (LSTW)		
Source	Solar Axions Emitted by the solar core	Relic Axions Axions that are part of galactic dark matter halo	Axions produced in the laboratory		
Concept	Magnet pointing to the Sun to allow axion-photon conversion inside (~keV)	Axion-photon conversion in a magnetic field inside of resonant cavities (matching resonant frequency)	Photon-axion-photon conversion in two different magnetic fields in the laboratory		
Pros	 Based only on well known solar physics → less model dependent Mature technology, scalable 	 Tunable resonant frequencies → different m_a QCD axions at reach 	 Based only on axion-photon coupling → not model dependent 		
Cons	- Coherence limited by magnet length (buffer gas!)	 Higly dependent on axions being the DM of the universe 	 Sensitivity penalized due to double axion-photon conversion 		

Parameter	\mathbf{Units}	BabyIAXO	IAXO	IAXO+
B	Т	~ 2	~ 2.5	~ 3.5
L	m	10	20	22
A	m^2	0.77	2.3	3.9
f_M	T^2m^4	~ 230	~ 6000	$\sim \! 24000$
b	${\rm keV^{-1}cm^{-2}s^{-1}}$	1×10^{-7}	10^{-8}	10^{-9}
ϵ_d		0.7	0.8	0.8
ϵ_o		0.35	0.7	0.7
a	cm^2	2 imes 0.3	8×0.15	8×0.15
ϵ_t		0.5	0.5	0.5
t	year	1.5	3	5

Table 1. Indicative values of the relevant experimental parameters representative of BabyIAXO as well as IAXO. The parameters listed are the magnet cross-sectional area A, length L and magnetic field strength B, the magnet figure of merit $f_M = B^2 L^2 A$, the detector normalized background band efficiency ϵ_d in the energy range of interest, the optics focusing efficiency or throughput ϵ_o and focal spot area a, as well as the tracking efficiency ϵ_t (i.e. the fraction of the time pointing to the sun) and the effetive exposure time. We refer to [21] for a detailed explanation and justification of these values.

Figure 3. Sensitivity plot of IAXO to BCA (g_{ae} -mediated) solar axions, in the ($|g_{ae}g_{a\gamma}|^{1/2}-m_a$) parameter space. The yellow band corresponds to the QCD axion models and the diamond-shaped color regions correspond to particular QCD axion models that are able to fit all the anomalous stellar cooling observations, following [23].

International AXion Observatory (IAXO)

CERN-SPSC-2013-022; SPSC-I-242; JINST 9 (2014) T05002

IAXO - A 4th generation axion helioscope

BabyIAXO at DESY

First step: Baby IAXO

- Technological prototype of IAXO
- Relevant physical outcome
- Improvement of the baseline experimental parameters
 - \rightarrow IAXO enhancement
- Collaboration growth and consolidation

Magnet

Design: 2 coil and 2 bore NbTi/Cu magnet

Common coil design

- Simple and cost-efficient
- 2 flat racetrack coils
 - 10m long
 - 12 strands of NbTi/Cu (coextruded with Al)

Bores

- Vacuum and buffer gas
- 2 bores
 - 0.7m diameter
 - 10m long

Cryostat

- Al5083-O alloy
- Thermal shield ~35K
- Dry cooling system with cryocoolers

Layout and magnetic field

 $f_M = B^2 L^2 A$

Optimized layout: **maximum magnetic field** at bores

IAXO pathfinder performance JCAP12 (2015) 008; NPHYS4149 !!!

Best background level

at the RoI [2,7] keV & all detector area

Strips + veto: (1.0 ± 0.2) x 10⁻⁶ counts keV⁻¹cm⁻²s⁻¹

Spectrum dominated by

- Cu escape peak at 8 keV
- Ar fluorescence line at 3 keV

2D hitmap of events

- Muon veto coincidences
- o Final counts
- (99%) 95%, 85%
 and 68% signal encircling regions
 (simulations)

Micromegas detection principle

