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 DM may consist of light bosons. These form a classical field , which coherently 
oscillates at their Compton frequency

  may have scalar interactions with the SM fields
 The fundamental constants (FC) may be expectation values of SM fields
 The coupling of  to SM fields may lead to oscillating fundamental constants

DM and oscillating fundamental constants

𝑓஼ ൌ 𝑚஍ 𝑐ଶ/ℎ Φ ൌ
2𝜌஽ெ

𝑚஍
 cos 2𝜋𝑓஼𝑡

Low-energy effective lagrangian with linear coupling:

F : electromagnetic field tensor
G: gluon field tensor
f:  fermion fields (electron, up-quark, down-quark, strange quark)
d: dimensionless coupling constants to the DM field 
: fine-structure constant
: beta function, describes the running of the coupling constant with energy
s = gs

2/4, strong force coupling constant; for 3 massless quarks, /2gs = -9s/8
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 Observables of light scalar DM may come from FC oscillations
 A series of experiments on oscillating FC has already been performed [1]
 Also: Equivalence-Principle (EP)-violating/5th force accelerations searches for

non-SM fields. Experiments have already set tight bounds [2]

DM and oscillating fundamental constants
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An open search

Which fundamental constants?

All?

Magnitude?

Period?

Make an encompassing search

 All constants

 All frequencies
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High quality factor of the transitions/modes lead to:
high sensitivity

but slow reaction – low bandwidth

Approach

Frequency metrology

• Transition frequency f between internal levels
of a quantum system

• Transition frequency between levels of a spin
in an external magnetic field

• Mode frequency of an electromagnetic resonator

• Mode frequency of a mechanical resonator

𝐸ଶ ൌ 𝐸ଶሺ𝛼, 𝑚௘, Λொ஼஽, … . ሻ

𝐸ଵ ൌ 𝐸ଵሺ𝛼, 𝑚௘, Λொ஼஽, … . ሻ

ℎ 𝑓 ൌ 𝐸ଶ െ 𝐸ଵ

Trade-off

The frequency ratio of two dissimilar oscillators is measured as a function of time
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 Optical transition frequency

 Hyperfine transition frequency

 Molecular vibrational transition frequency

 Electromagnetic cavity mode frequency
(empty cavity)

 Mechanical mode frequency

Some dependencies
𝑓 ∝ 𝑚௘𝑐ଶ𝛼ଶ 𝐻ሺ𝛼ሻ

𝑓 ∝ 𝑚௘𝑐ଶ𝛼ସ𝐹ሺ𝛼ሻ
𝑚௘
𝑚௣

𝜇௡௨௖

𝑓 ∝ 𝑚௘𝑐ଶ𝛼ଶ  
𝑚௘

𝑀௡௨௖

ଵ
ଶ

𝐺
𝑚௘

𝑀௡௨௖

𝑓 ∝ 𝑚௘𝑐ଶ𝛼ଶ  
𝑚௘

𝑀௡௨௖

ଵ
ଶ

𝑓 ∝ 𝑚௘𝑐ଶ𝛼

µnuc has a small/modest dependence on ms (~0.01) and on 𝑚ෝ (~0.1)

𝑚ෝ ൌ ሺ𝑚௨ ൅ 𝑚ௗሻ/2
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Classes of systems and their performance

Atomic clocks frac. accuracy/stability fmax (Hz)
optical transitions (electronic) 10-18/10-18 1
microwave transitions (hyperfine) 10-16/10-16 1

Atomic spectroscopy
optical transitions (electronic) 10-14/10-14 107

microwave (hyperfine) 10-14/10-14 103

Molecular standards/spectroscopy
optical transitions (electronic) 10-14/10-15 107

mid-infrared transitions (vibrational) 10-15/10-15 106

THz transitions (rotational) 10-11/10-11 104

Other
Mass spectrometers (mass ratios) 10-11 0.1
Atom interferometers (h/mass) 10-10 1
g-factors of electron, positron, nuclei 10-12 0.1

Electromagnetic resonators
Microwave resonators --/10-16 104

Optical resonators --/10-17 104

Mechanical resonators
quartz crystals --/10-13 103

Note: rough estimates

Recent experiments
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Opportunity

Experiments so far have not addressed:

Oscillations of nuclear mass with frequencies > 1 Hz

Optical spectroscopy is well suited for this purpose!

Proposal:
D. Antypas et al. 
„Probing fast oscillating scalar dark matter with atoms and molecules”
Quantum Science and Technology 6, 034001 (2021)
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Optical transitions in molecules
Rotational and vibrational levels
in two different electronic states of a diatomic molecule

From: W. Demtröder
Atoms, Molecules and Photons

Electronic transition:
contribution from vibration to
transition frequency is small (~ 0.1)

Vibrational transition:
full contribution from vibration
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Experimental setups

100 Hz < f < 0.1 MHz 0.1 MHz < f < 100 MHz

Saturation spectroscopy Absorption spectroscopyExperiment A Experiment B

Experiment is sensitive to 6 fundamental constants!

𝑓௠௢௟

𝑓௠௢௟
𝑓௅

𝑓௅
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Iodine transition lines
Experiment A

Experiment B



S. Schiller hhu.de

Experimental limits

Experiment B

Experiment A

• No evidence for
oscillations

• Analysis takes axion
lineshape into account

• Results are limited by
technical noise

19 h of data

60 h of data
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Analysis

Dependence of nuclear mass on the DM field:

 ൌ
2𝜌஽ெ

𝑚஍
 cos 2𝜋𝑓஼𝑡

𝛿𝑀௡௨௖
𝑀௡௨௖

ൌ 𝑑௚ ൅ 0.093𝑑௠ෝ ൅ 0.043𝑑௠ೞ

Φ
𝑀௉௟

effectively:
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Bounds

ೞ

Solar halo limits: based on model 2007.11016; extended

Earth halo limits: based on model in Banerjee et al. 
Comm. Physics 3, 1 (2020)

(*) accidental

gluons

strange
quark

light
quarks

preliminary

(*)
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 A search for oscillating nuclear mass is feasible in a wide spectrum
using standard molecular spectroscopy of gas: sub-kHz to 100 MHz

 Experimental bounds on modulation of molecular transition frequency
are at several  10-15

 We set bounds on the coupling of light DM scalar field to gluons and
quark masses at level 106 (Galactic halo model)

 Improvement of bounds by several orders appears feasible, with effort

Summary and conclusion
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ொ஼஽
ଶగ/ሺఉబ ఈೞ ఓమ,஍ ሻ

: renormalization-running-energy scale
0: leading-order beta function
s: strong force coupling constant;

here it also depends on  due to the inner coupling added to the GG term

1-loop result
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 These do not depend on  having a background value or being DM.
 Because  is light it mediates a long-range force between two SM 

objects that couple to 
 the force can be tested via 5th-force-EP-type experiments.
 Example: m = 1 neV  f = 240 kHz,   = 1.2 km

EP-violation/5th force experiments

ℒ ⊂ 𝑦௡௨௖
Φ

𝑀௉௟
𝑚௡௨௖𝑁ഥ𝑁 𝑦௡௨௖:

𝑁:
Effective coupling constant
nucleon field

𝐹 𝑟 ൌ 𝑦௡௨௖
ଶ 𝑚௡௨௖

ଶ

𝑀௉௟
ଶ

𝑒ି௥/ஃ

4𝜋 𝑟
:
𝐹:

Compton wavelength h/mc
nucleon-nucleon 5th force
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Models of ultra-light DM:
 1405.2925 the DM is the dilaton (the Goldstone boson of scale invariance)
 1810.01889 (the DM is ALP and due to spontaneous breaking of CP mixes 

with the Higgs)


