Axion Quasiparticles for Axion Dark Matter Detection

David J. E. Marsh

Axion-WIMP (Patras), 2021

DJEM et al PRL (2018) and Schütte-Engel, DJEM et al 2102.05366

Science and Technology Facilities Council

COLLABORATORS

M. Ali (MPI Halle), C. Braggio (INFN), F. Chadha-Day (Durham), K.C. Fong (BBN-Tech), E. Hardy (Liverpool), S. Hoof (Göttingen), E. Lentz (Göttingen), C. Liu (SUS-Tech), A. Millar (Stockholm), J. Schuette-Engel (UIUC), A. Sekine (RIKEN), L. Smejkal (Mainz)

How to Detect Axions

Sikivie Haloscope

Microwave cavity.

Resonance when axion frequency ~ cavity natural frequency.

Volume \rightarrow works for frequencies ~ GHz

Production of radio waves inside the cavity. Power $\sim 10^{-22}$ W, detect with e.g. JPA.

meV/THz Challenge

(see Knirck talk about BREAD)

Fixed by MW rotation curve. Predicted from theory. Experimental parameters.

THz cavity has very low power $\rightarrow 10^{-29}$ W for the axion. Tune $\delta L \sim$ nanometre.

Magnetic resonance overcomes these problems! ω is independent of V, and tuning can happen on $\delta B{\sim}\mu T.$

Materials Science:

Antiferromagnetic resonance (AFMR) \rightarrow THz from "anisotropy field" ~ 10 meV. Topological insulator \rightarrow AFMR driven by axion-photon coupling (DJEM et al, 2018).

AXION QUASIPARTICLES

Review: Sekine & Nomura 2011.13601

Dynamical axion field in topological magnetic insulators

Rundong Li¹, Jing Wang^{1,2}, Xiao-Liang Qi¹ and Shou-Cheng Zhang^{1*}

The longitudinal magnon has the right properties to couple to E.B \rightarrow axion quasiparticle.

$$\delta\Theta\approx \frac{U}{M_0}\delta n_z \qquad {\rm U}=``{\rm Hubbard\ term''}\,, {\rm M_0}={\rm bulk\ band\ gap, nz=magnon}$$

Key idea: use the axion quasiparticle to detect axion dark matter.

Antiferromagnetic "Magnons"

Figs: Joel Cramer and Wikiwand.com

A-lattice B-lattice

External field \rightarrow spin precession \rightarrow "spin wave"

Antiferromagnetic ''magnetization'': $n = \langle M_A
angle - \langle M_B
angle$

Spins have magnetic fields \rightarrow interact via "exchange" with each other, and "anisotropy" to "easy axis" direction in crystal.

Axion Quasiparticles

In our material candidates (*), the AQ is the longitudinal (amplitude) magnon mode.

$$S_{\text{eff}}[\psi,\bar{\psi},\mathbf{n},A_{\mu}] = \int d^{4}x \sum_{f} \bar{\psi}_{f} \left[i\gamma^{\mu}D_{\mu} - M_{0} + i\gamma^{5}M_{5f}\right]\psi_{f}$$

$$AQ = AF \text{ order parameter}$$

$$AQ = AF \text{ order parameter}$$

$$\gamma_{5} \text{ from broken P and T}$$

$$N\acute{\text{elevector:}}$$

$$M\acute{\text{magnons}}$$

$$EM \text{ covariant}$$

$$derivative$$

$$``Dirac mass'' = \text{bulk}$$

band gap

Axion Quasiparticles

In our material candidates (*), the AQ is the longitudinal (amplitude) magnon mode.

$$S_{\text{eff}}[\psi,\bar{\psi},\mathbf{n},A_{\mu}] = \int d^4x \sum_f \bar{\psi}_f \left[i\gamma^{\mu}D_{\mu} - M_0 + i\gamma^5 M_{5f}\right]\psi_f$$

"Integrate in" dynamics for the order parameter M_5 =Un. Triangle diagram \rightarrow E.B coupling.

$$S_{\text{eff}}[\Theta] = \frac{f_{\Theta}^2}{2} \int d^4x \left[(\partial_t \delta \Theta)^2 - (v_i \partial_i \delta \Theta)^2 - m_{\Theta}^2 \delta \Theta^2 \right] + \frac{\alpha}{\pi} \left(\delta \Theta + \Theta_0 \right) E \cdot E$$

$$\delta \Theta \approx \frac{\delta M_5}{M_0} \xrightarrow{\gamma_5} \psi \xrightarrow{\gamma_5} \psi \xrightarrow{\gamma_6} A_\mu$$

$$\Theta_0 = \pi \text{ in topological insulators: surface Hall currents}$$

Axion Quasiparticles

Li et al (2010) *ab initio* cubic lattice calculation \rightarrow electron bands \rightarrow AQ parameters:

	1	Measured		Simulated	
Symbol	Name	$(\mathrm{Bi}_{1-x}\mathrm{Fe}_x)_2\mathrm{Se}_3$	$\rm Mn_2Bi_2Te_5$		
$\mu_B H_E$	Exchange	1 meV	[110]	0.8 meV	[111]
$\mu_B H_A$	Anisotropy	16 meV	[107]	0.1 meV	[111]
$V_{ m u.c.}$	Unit cell volume	440 Å^3		270 \AA^{3}	
U	Hubbard term	3 eV	[107]	3 eV	[111]
M_0	Bulk band gap	$0.03{ m eV}~(0.2{ m eV})$	[107]	$0.05 \ \mathrm{eV}$	[111]
t	Nearest neighbour hopping ^a	$0.04 \mathrm{eV}$		0.04 eV	
S	Magnetic moment	4.99	[107]	4.59	[111]
T_N	Néel temperature	10 K	[98]	6 K ^b	
ϵ_1	Dielectric constant	25 (100)		25	

Rescaled estimates from cubic lattice model

Symbol	Name	Equations	"Material 1"	"Material 2"
$m_{\Theta} \ f_{\Theta}$	AQ mass	(2.35), (2.38)	2 meV	1.8 meV
	AQ decay constant	(2.34), (2.37)	30 eV	70 eV

At fixed frequency and B field, larger f_{Θ} is slightly favourable.

BOOST AMPLITUDE & LOSSES

Axion dark matter drives the system at frequency given by axion mass.

Axion quasiparticle E-B coupling mixes E and $\Theta \rightarrow \underline{\text{effective photon mass}} \sim \underline{\text{m}}_{\Theta} \rightarrow \underline{\text{meV}}$

$$\ddot{\phi}_{\pm} + \omega_{\pm}^2 \phi_{\pm} = J_{\pm} \cos m_a t \quad \{m_{\Theta}, f_{\Theta}\} \to \omega_{\pm}^2 = m_{\Theta}^2 + b^2$$
$$b = \frac{\alpha}{\pi\sqrt{2}} \frac{B_0}{\sqrt{\epsilon}f_{\Theta}} = 1.8 \text{ meV} \left(\frac{25}{\epsilon}\right)^{1/2} \left(\frac{B_0}{2\text{ T}}\right) \left(\frac{64 \text{ eV}}{f_{\Theta}}\right), \quad \frac{\text{Scan the}}{\text{resonance}}$$

Polariton resonance \rightarrow material acts like effective $n_{\Theta} < 1$: longer wavelength.

$$n_{\Theta} = n \left[1 - \frac{b^2}{\omega^2 - m_{\Theta}^2} \right]$$

Constructive interference of reflected waves \rightarrow boost amplitude $1/n_{\Theta}^{2}$.

$$P = \frac{E_0^2}{2}\beta^2 A$$

Boundary condition calculation follows MADMAX (Millar et al 2016; see Krieger talk)

Dielectric Function

Recall that dielectrics have damping of the electric field:

$$\ddot{E} + \Gamma_{\rho}\dot{E} + \frac{k^2}{\epsilon_1}E + \frac{\alpha}{\epsilon_1\pi}\delta\ddot{\Theta} = J\cos\omega_a t$$

Cao & Wang (2013)

Impurities and Domains

At low temperatures, constant effect of impurities dominates the magnon linewidth:

Poorly understood. Estimate for width:

 $\Gamma = \frac{\delta L}{L} \omega$

Typical impurities on the scale of microns, while lattice scale ~ 10 Angstroms \rightarrow

$$\Gamma \sim 1 \,\mu \mathrm{eV} \Rightarrow Q \sim 10^3$$

Boost Amplitude & Losses

"Material 2": Mn₂Bi₂Te₅ at B=2 T

Resonant enhancement near polariton resonance. Increases with thickness. Limited by losses. Losses \rightarrow finite skin depth \rightarrow optimal thickness ~ I-2 mm for realistic values. $\beta^2 \sim 10^2 - 10^4$

AXION DARK MATTER DETECTION

Axion quasiparticle materials are large volume, tunable, THz resonantors!

Photon rate on resonance for QCD axion:

(see Knirck, Spagnolo, Kuzmin, McAllister...)

$$\Gamma_{a \to \gamma} = 3 \times 10^{-4} \text{ Hz } C_{a\gamma}^2 \left(\frac{B}{10\text{ T}}\right)^2 \left(\frac{10 \text{ meV}}{m_a}\right) \left(\frac{\beta^2}{10^3}\right) \left(\frac{A}{(20 \text{ cm})^2}\right)$$

nature

Explore our content < Journal information <

nature > articles > article

Article Published: 30 September 2020

Graphene-based Josephson junction microwave bolometer

Gil-Ho Lee, Dmitri K. Efetov, Woochan Jung, Leonardo Ranzani, Evan D. Walsh, Thomas A. Ohki, Takashi Taniguchi, Kenji Watanabe, Philip Kim, Dirk Englund & Kin Chung Fong 🖂

Nature 586, 42–46(2020) | Cite this article

Need low dark count, high efficiency detector. Possible collaboration with BRASS. Aim for $f \sim 800$ GHz.

Surface area ~ $(\lambda_{dB})^2$ ~ $(20 \text{ cm})^2$. d~2mm. Scan 3 years.

FINDING THE AXION QUASIPARTICLE

The right material hasn't been found, yet..

Manganese Bismuth Telluride: Mn_xBi_yTe_z

New class of intrinsically magnetic topological insulators: hot topic in materials science. Hunt for dynamical axion is on!

(124) phase crystals supplied. Wrong symmetry →
 AFMR but no axion quasiparticle, metallic. ☺
 Test case for characterisation ☺
 (225) axion quasiparticle candidate: no recipe yet ☺

Chang Liu (SUS-Tech), Ni Ni (UCLA)

THz Spectroscopy

GOAL: identify axion-polariton resonance, measure it's width \rightarrow discover axion quasiparticle!

Caterina Braggio, INFN Legnaro.

We now understand how the resonance operates for a range of parameters and losses.

Now: measure real materials and discover axion quasiparticles.

DM detection: scan~1-10 meV range using (20 cm)², 2mm thick disk. Require losses equivalent to Q>10³.

BACKUP SLIDES

Topological Insulators

e.g. Kane & Mele (2005)

Materials based on Bismuth (e.g. Bi₂Se₃, Bi₂Te₃), and Antimony (e.g. Sb₂Te₃)

Topological Insulators

e.g. Kane & Mele (2005) Fig: Wikipedia

Class of new materials with insulating bulk and conducting surface.

Surface Hall currents described by electromagnetic " Θ -term", with $\Theta=\pi$.

$\mathcal{L} = \Theta \mathbf{E} \cdot \mathbf{B}$

Static Θ (symmetry) \rightarrow only affect EM on surface. Note: E is parallel to B just like axion source!

Momentum

Axion Quasiparticles in AF-TIs

Magnetic TI with broken symmetries \rightarrow Θ -term is dynamical.

Longitudinal magnons have quantum numbers to couple $\Theta \rightarrow$ dynamical $\delta \theta$ axion-like coupling to E.B

Lvov, Wave Turbulence (1994) Bayrackci et al (2013)

Thermal magnons can scatter off the ground state and destroy its coherence:

Scattering appears in the collision term in the Boltzmann equation \rightarrow coherence time.

$$\dot{n}_1 = -\int n_1 n_2 |\mathcal{M}|^2 \,\mathrm{d}\Phi = -n_1 \langle \sigma v n_2 \rangle = -\Gamma(T) n_1$$

Neutron scattering measurement of $\Gamma(4K) \sim \mu eV \Rightarrow Q \sim 10^3 \frac{\text{Boltzmann}}{\text{suppressed at T< }\omega}$

Antiferromagnetic Magnons

e.g. Haldane (1983), Hofmann (1998)

Mean field theory for Heisenberg model in crystal. Use Noether's theorem. Magnetic order breaks SO(3) and T \rightarrow goldstone bosons called magnons (spin waves). c.f.crystal structure breaks translation symmetry \rightarrow goldstone bosons called phonons.

Effective field theory \rightarrow simple model of transverse magnons:

$$\mathcal{L} = \frac{F_1^2}{2} (D_t n^i)^2 - \frac{F_2^2}{2} (D_x n^i)^2 + O_i n^i \quad \begin{array}{l} \text{n live on coset space:} \\ \text{G/H} = \text{SO(3)/U(I)} = \text{S}^2 \end{array}$$

Oscillation frequency given by exchange (F), anisotropy (O), applied (D) fields:

"Kittel shift"
$$\omega_{
m AFMR} = \mu H_0 + \sqrt{H_A(2H_E + H_A)} m_s$$
 Spin wave "mass"

"Gell-Mann-Oakes- $F^2 m_s^2 = L H_A$

(spontaneous) * (explicit) symmetry breaking

Spin wave "stiffness"

Longitudinal AQ Mass

Ishiwata (2021)

Axion potential and kinetic term from "integrating in".

meV axion near AFM-paramagnetic phase boundary.

Axions possible in normal insulators→ possibly larger resistance than TIs?

Phase boundary \rightarrow non-linear effects and larger DM signal?

Longitudinal Magnons

Allow for variation of the length of the Néel vector in the sigma model. Another option: consider the spin density wave with incommensurate Q.

AQ as Transverse Magnon

Chigusa, Moroi, Nakayama (2021)

In the "Fu-Kane-Mele-Hubbard" model, the AQ is the transverse magnon \rightarrow parameters fixed by known AFMR physics. Two modes split by Kittel effect.

Assumes free space resonance and $Q \sim 10^6$ (long magnon lifetime).

Neglect polariton mixing \rightarrow ignores resistive losses. No model for visible photon production.

No known materials described by this model.

Example: AFMR by Transmission Little et al (2017)

We would like to do measurements of ω and Γ like this (AF material α RuCl):

Time domain spectroscopy with femotsecond THz source. Cryogenic temperatures, $B \sim 1$ T.

Galaxy formation

e.g. D|EM (2016)

"Black Hole Superradiance"

"Black Hole Superradiance" e.g. DJEM & Stott (2018) ⁻ig: Physics World

SN1987A Neutrino Burst e.g. Chang et al (2018)

What is the Axion Mass?

e.g. Gorghetto et al (2018+); Riess, Hoof, DJEM (to appear)

Spontaneous symmetry breaking \rightarrow primoridal oscillations of axion field.

Cosmic DM density is a function of axion mass.

Challenging, but *solvable* computational problem.

This scenario seems to favour meV → THz

"Defects" form and decay, emitting axions (not shown)

Axions vs WIMPs

Two historical dark matter theories proposed in 70's/80's.

DMTools