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Why revisit the solar axion flux?

= Current & future experimental prospects
» (Baby)IAXO can explore the QCD axion

band1904.09155, talk by Elisa Ruiz Choliz (Thu)

» XENONIT excesszooe.omw, talk by Adam Brown (today)
> e
= Recent activity for solar production processes
» Axion production in atomic transitions'?°81087
» Plasmon conversion in large-scale solar
B_ﬁ eld32005.00078, 200612431, 2010.06601
= Measurements beyond detection

» Determining the axion mass & couplings'™®09278, 18109290
» Solar composition, metallicity, B-fields0810878, 200612431


https://arxiv.org/abs/1904.09155
https://agenda.infn.it/event/20431/contributions/137674/
https://arxiv.org/abs/2006.09721
https://agenda.infn.it/event/20431/contributions/137750/
https://arxiv.org/abs/1908.10878
https://arxiv.org/abs/2005.00078
https://arxiv.org/abs/2006.12431
https://arxiv.org/abs/2010.06601
https://arxiv.org/abs/1811.09278
https://arxiv.org/abs/1811.09290
https://arxiv.org/abs/1908.10878
https://arxiv.org/abs/2006.12431

What did we do?

1. Revisited the solar axion flux calculation, included
electron degeneracy effects for the Primakoff flux

2. Surveyed available solar models & opacity codes, wrote
light-weight, publicly available library compatible with
standard solar model formats

3. Quantified statistical & systematic uncertainties,
investigated their relevance for axion detection, parameter
estimates, & solar probes
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Systematic uncertainties: different solar models
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Systematic uncertainties: different solar models

27T 7T T 71 T T T 7T T

10

e / AGS05
o — —— AGSS09ph

AGSS09
------ B16-AGSS09

g

D
— I;J-.'-.'-'“J'Ill.‘r..rl.illllmtl L= =

.
s
Ry
iy,

g g
, ) e

0 . - ‘ e —;
0 2 8 10
Energy w [keV]

Clearly visible difference because some models do

Axion flux d®, /dw [10*° cm=2keV~!s71]

not track important heavier elements e.g. Fe 5



Systematic uncertainties

= Not all solar models provide complete information for the
abundance of various “metals” » use not recommended!

= Solar models: systematics due to solar metallicity
problem: avg. uncertainty ~5%, but can be up to
11% (Primakoff flux) or 19% (peaks in the ABC flux)

= Opacity codes disagree on average less than 2%, but can
be up to 440% (sic!) at ABC flux peaks



What about statistical uncertainties?

= Propagate full statistical uncertainties from 10,000 Monte
Carlo samples of representative low-Z (AGSS09) &
h |gh‘Z (6598) modelsastrofph/05ﬂ337 + A Serenelli updates


https://arxiv.org/abs/astro-ph/0511337
https://arxiv.org/abs/1611.09867

What about statistical uncertainties?

= Propagate full statistical uncertainties from 10,000 Monte
Carlo samples of representative low-Z (AGSS09) &
h |gh‘Z (6598) modelsastrofph/05ﬂ337 + A Serenelli updates

= However: no statistical error estimates for monochromatic
opacities x(T,...) available

= Use heuristic ansatz that captures known properties of the
uncertainties™m o’

| To/
=1+a+b—0g10( o/ D)

K .
- , with a~ (0, 0.02), b~ A4(0,0.07)
% 10g,0(To/ Tc)


https://arxiv.org/abs/astro-ph/0511337
https://arxiv.org/abs/1611.09867

Statistical uncertainties from Monte Carlo

Primakoff fluxes ABC fluxes
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Statistical uncertainties from Monte Carlo

Primakoff fluxes ABC fluxes
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Difference in mean values = metallicity problem in
low-Z (AGSS09) vs high-Z (GS98) models



Statistical uncertainties from Monte Carlo

Primakoff fluxes ABC fluxes
1.3:‘/'§C';séoglal""Ic;,sg;g"l""‘- 1.3 FAcssos ' “Tasos
[ — Mean (doT /dw) Mean (d®¥ /dw) ] [ —Mean (a27C/dw) —Mean (a237C /dw)]
1.9 1.9 [ == (do2BC/dw) + 10 —-(diﬁBc/dw)ila_'

———(d@ /dw) + 1o ——(d@ /dw)ilcr—

—
J—

Flux relative to AGSS09 mean
o
2 : F '
1

lux relative to AGSS09 mean

F

" L " PRI RS S S
0.0 . 0 10 0 . 7. 10.0
Energy [keV Energy w [keV]

10 error bands = spectral statistical uncertainty;
similar for AGSS09 and GS98, smaller than syst.
uncertainty



Statistical uncertainties from Monte Carlo

= Solar models: stat. uncertainties ~ 2% on average and up
to 5% for the ABC flux in both low-Z & high-Z models

= Averaged opacity uncertainty at the sub-percent level; up
to 17% for specific energies



Statistical uncertainties from Monte Carlo

= Solar models: stat. uncertainties ~ 2% on average and up
to 5% for the ABC flux in both low-Z & high-Z models

= Averaged opacity uncertainty at the sub-percent level; up
to 17% for specific energies

» Stat. uncertainties small compared to systematics from
solar models, opacity codes, & theory uncertainties/
neglected effects

» Focus improving theoretical calculations & solar B-field
models (for plasmons) to reach percent-level accuracy



Identifying KSVZ axions with IAXO: hypothetical signals

Consider 15 preferred KSVZ models with Ng = 1701007%. 170505570
Primakoff flux dominant, signal o g‘}lw
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» |[AXO could not just find KSVZ axions but also provide a hint
for the solar metallicity problem 10


https://arxiv.org/abs/1610.07593
https://arxiv.org/abs/1705.05370

Looking ahead: KSVZ axion models with Ng=1

» Extend Ng=1 preferred
models to Ng>1

= Esp. Landau Pole (LP)
criterion is very powerful

n



Extend Ng =1 preferred
models to Ng>1

Esp. Landau Pole (LP)
criterion is very powerful
Upper limit on Ng i.e. finite
number of KSVZ axion
models; exact value depends
on operators & constraints

We find* Ng <28, less than
60,000 non-equivalent
models, & 443 distinct E/N

Number of models / bin

Looking ahead: KSVZ axion models with Ng=1
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*Histogram of all non-equivalent KSVZ models with
additive representations from dim < 5 operators
(lifetime constraints) that respect LP < mp.
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Looking ahead: KSVZ axion models with Ng=1

m Can interpret model catalogue as a statistical distribution

» Theory-inspired prior on the axion-photon coupling
|gayyl < |EIN—-1.92(4)| from E/N catalogue

12



Looking ahead: KSVZ axion models with Ng=1

m Can interpret model catalogue as a statistical distribution

» Theory-inspired prior on the axion-photon coupling
|gayyl < |EIN—-1.92(4)| from E/N catalogue

m Here: every representation = equally probable + LP criterion
107 p—r—rrrrmm
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Credit to Ciaran O'Hare for digitised limits ~ Axion mass m, [meV]




Summary

= Primakoff (P) flux predicted at percent level, ABC flux
has larger uncertainties

= We included electron degeneracy for P but still more
work: solar B-fields, subleading effects, plasma
simulation incl. axion emission (opacity), QCD
calculations & measurements, ...

= |AXO can distinguish (preferred) QCD axion models
when m, is detected; hint towards high-Z or low-Z
solar models in ideal case

= Code (library+Python wrapper) on Github ©
= Catalogue for KSVZ models with Ng> 1; stay tuned!


https://github.com/sebhoof/SolarAxionFlux

