

Uncertainties of the Solar Axion Flux and Their Impact on Identifying QCD Axion Models

Sebastian Hoof, J. Jaeckel, & L. J. Thormaehlen, arXiv:2101.08789

V. Plakkot & SH, in preparation

16th Patras Workshop on Axions, WIMPs and WISPs Online, 16 June 2021

Why revisit the solar axion flux?

Current & future experimental prospects

- ► (Baby)IAXO can explore the QCD axion band 1904.09155, talk by Elisa Ruiz Chóliz (Thu)
- ► XENON1T excess^{2006.09721}, talk by Adam Brown (today)
- ▶ ...

Recent activity for solar production processes

- ► Axion production in atomic transitions 1908.10878
- ► Plasmon conversion in large-scale solar B-fields^{2005,00078}, ^{2006,12431}, ^{2010,06601}

Measurements beyond detection

- ► Determining the axion mass & couplings 1811.09278, 1811.09290
- ► Solar composition, metallicity, *B*-fields^{1908.10878, 2006.12431}

What did we do?

- Revisited the solar axion flux calculation, included electron degeneracy effects for the Primakoff flux
- 2. Surveyed available solar models & opacity codes, wrote light-weight, *publicly available library* compatible with standard solar model formats
- 3. Quantified statistical & systematic uncertainties, investigated their relevance for axion detection, parameter estimates, & solar probes

Axion interactions in the Sun

$$\mathcal{L}_{\text{ALP}} = \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} \underbrace{m_a^2} a^2 - \frac{g_{a\gamma\gamma}}{4} a F \widetilde{F} + \frac{g_{aee}}{2m_e} (\partial_{\mu} a) \, \overline{e} \gamma^{\mu} \gamma^5 \, e \underbrace{+ \mathcal{L}_{a, \text{nucl}} + \mathcal{L}_{\text{CP}}}_{\text{not included}}$$

Works by Raffelt(+), Redondo, ... (see our paper for detailed list of refs)

Systematic uncertainties: different solar models

Systematic uncertainties: different solar models

Clearly visible difference because some models do not track important heavier elements e.g. Fe

Systematic uncertainties

Not all solar models provide complete information for the abundance of various "metals" ➤ use not recommended!

- Solar models: systematics due to solar metallicity problem: avg. uncertainty ~ 5%, but can be up to 11% (Primakoff flux) or 19% (peaks in the ABC flux)
- Opacity codes disagree on average less than 2%, but can be up to 440% (sic!) at ABC flux peaks

What about statistical uncertainties?

 Propagate full statistical uncertainties from 10,000 Monte Carlo samples of representative low-Z (AGSS09) & high-Z (GS98) models^{astro-ph/0511337 + A. Serenelli updates}

What about statistical uncertainties?

- Propagate full statistical uncertainties from 10,000 Monte Carlo samples of representative low-Z (AGSS09) & high-Z (GS98) modelsastro-ph/0511337 + A. Serenelli updates
- However: no statistical error estimates for monochromatic opacities $\kappa(T,...)$ available
- Use heuristic ansatz that captures known properties of the uncertainties^{1611.09867}

$$\frac{\kappa}{\hat{\kappa}} = 1 + a + b \frac{\log_{10}(T_0/T)}{\log_{10}(T_0/T_{\text{CZ}})}, \text{ with } a \sim \mathcal{N}(0, 0.02), \ b \sim \mathcal{N}(0, 0.07)$$

Difference in mean values = metallicity problem in low-Z (AGSS09) vs high-Z (GS98) models

 1σ error bands = spectral statistical uncertainty; similar for AGSS09 and GS98, smaller than syst. uncertainty

- Solar models: stat. uncertainties ~ 2% on average and up to 5% for the ABC flux in both low-Z & high-Z models
- Averaged opacity uncertainty at the sub-percent level; up to 17% for specific energies

- Solar models: stat. uncertainties ~ 2% on average and up to 5% for the ABC flux in both low-Z & high-Z models
- Averaged opacity uncertainty at the sub-percent level; up to 17% for specific energies
- Stat. uncertainties small compared to systematics from solar models, opacity codes, & theory uncertainties/ neglected effects
- ➤ Focus improving theoretical calculations & solar *B*-field models (for plasmons) to reach percent-level accuracy

Identifying KSVZ axions with IAXO: hypothetical signals

Consider 15 preferred KSVZ models with $N_Q=1^{1610.07593,\,1705.05370}$: Primakoff flux dominant, signal $\propto g_{a\gamma\gamma}^4$

→ IAXO could not just find KSVZ axions but also provide a hint for the solar metallicity problem

- Extend $N_Q = 1$ preferred models to $N_Q > 1$
- Esp. Landau Pole (LP) criterion is very powerful

- Extend $N_Q = 1$ preferred models to $N_Q > 1$
- Esp. Landau Pole (LP) criterion is very powerful
- ➤ Upper limit on N_Q i.e. finite number of KSVZ axion models; exact value depends on operators & constraints
 - We find* $N_Q \le 28$, less than 60,000 non-equivalent models, & 443 distinct EIN

*Histogram of all non-equivalent KSVZ models with additive representations from dim ≤ 5 operators (lifetime constraints) that respect LP $< m_{\rm Pl}$.

- Can interpret model catalogue as a statistical distribution
- Theory-inspired prior on the axion-photon coupling $|g_{a\gamma\gamma}| \propto |E/N 1.92(4)|$ from E/N catalogue

- Can interpret model catalogue as a statistical distribution
- Theory-inspired prior on the axion-photon coupling $|g_{\alpha\gamma\gamma}| \propto |E/N 1.92(4)|$ from E/N catalogue
 - Here: every representation = equally probable + LP criterion

Summary

- Primakoff (P) flux predicted at percent level, ABC flux has larger uncertainties
- We included electron degeneracy for P but still more work: solar B-fields, subleading effects, plasma simulation incl. axion emission (opacity), QCD calculations & measurements, ...
- IAXO can distinguish (preferred) QCD axion models when m_a is detected; hint towards high-Z or low-Z solar models in ideal case
- Code (library+Python wrapper) on Github •
- Catalogue for KSVZ models with $N_Q > 1$; stay tuned!