The AuroraScience Project

F. S. Schifano¹

¹University of Ferrara and INFN-Ferrara

November 25-26, 2009

A B > A B >

The AuroraScience Project

The AuroraScience project

- formally started in summer 2009
- has technological and scientific goals:
 - study of APE-like architectures based on off-the-shelf processors
 - development of scientific applications
 - study of programming methodologies for multi-core achitectures
- is divided in two main phases:
 - first phase develops a prototype of 20 Tflops and ends in Dec. 2010
 - second phase develops a prototype of \approx 100 Tflops and ...
 - ... is scheduled for Jan. 2011 Jun. 2012
 - start of second phase will be decided in summer 2010.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The AuroraScience Project Collaboration

- ECT*
- INFN (Fe, Mi, Pr)
- Dipartimento di Fisica Università di Trento
- DEI: Dipartimento di Ingegneria dell'Informazione Università di Padova

and Trentino-located institutions:

- IASMA: Istituto Agrario S. Michele all'Adige
- ATreP: Agenzia Provinciale per la Protonterapia.

< ロ > < 同 > < 回 > < 回 > < 回 >

AuroraScience: Funding Structure

- The project has been formally approved by "Provincia Autonoma di Trento" (PAT)
- The funding is about 3 M€ (1.5 + 1.5)
- The funding includes:
 - delivering of two prototypes: 20Tflops + 100Tflops
 - several positions for hardware and software development and physics.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

AuroraScience: Goals

Scientific goals:

- design and development of 3D network system a la APE (hw and sw)
- porting of scientific applications: mainly LQCD, LBE, ...
- ... but also genomic, medical physics, nuclear physics relevant for the "Trentino" institutions
- study of multi-core programming strategies.

Technological goals:

- use of latest generation of Intel CPUs
- assembly a \approx 20 Tflops machine in 2010
- assembly \approx 100 Tflops machine in 2011

イロト イポト イヨト イヨト 一日

AuroraScience vs Aurora

The hardware design of the machine has been done together with Eurotech before formal approval of the project:

- this allowed to have the machine available just a few months after the official start of the project
- design details are not optimized only for LQCD and have a negative impact on costs ×

However we think that:

- it is another relevant development in using non-custom CPUs in APE-like systems
- it is an important experience to be used as base for future projects.

イロト イポト イヨト イヨト 一日

The AuroraScience Machine: the processor

The choise of the processor is based on latest generations of Intel CPUs.

The project aim to use two/three versions of Intel processors:

- 4-core Nehalem, 50 Gflops peak double-precision
- 6-core Westmere, 75 Gflops peak double-precision
- 8-core Sandy Bridge ~ 200 Gflops peak double-precision (2x cores + AVX 256-bit)

< ロ > < 同 > < 回 > < 回 > < 回 >

The AuroraScience Machine: the node-card

A node-card includes:

- 2 CPUs
- 6 GB of RAM per processor
- I Infiniband adapter
- I FPGA Altera Stratix IV GX230
- 6 PMC-Sierra quad-link PHYs

Peak perfomance:

- Nehalem version 100 Gflops
- Westmere version 150 Gflops
- Sandy Bridge version 400 Gflops

イモトイモト

4 A 1

The AuroraScience Machine: the node-card block-diagram

9/24

The AuroraScience Machine: the node-card

F. S. Schifano (Univ. and INFN of Ferrara)

The AuroraScience Project

The Aurora Machine: the node-card with cold plate

F. S. Schifano (Univ. and INFN of Ferrara)

The AuroraScience Project

< □ > < □ > < □ >

The AuroraScience Machine: the Crate/Chassis (front)

F. S. Schifano (Univ. and INFN of Ferrara)

The AuroraScience Project

The AuroraScience Machine: the Crate/Chassis (rear)

The AuroraScience Machine: the root-card

イロン イロン イヨン イヨン

The AuroraScience (3D-torus) network

Aurora nodes are interconnected through a switched-network and a nearest neighbor 3D-torus network a la APE ... QPACE.

3D-torus:

- processor interface based on standard PCIe Gen2 16x
- network processor implemented on FPGA (Altera Stratix IV GX230)
- routing logic supporting nearest-neighbor communications plus . . . under study
- 6 data-links:
 - physical level based on 10Gbit PMC-Sierra quadPHY
 - > bandwidth: 1 GByte / link / direction, latency: \sim 2 3 μ sec

-

The QPACE 3D-torus network processor

The AuroraScience 3D-torus network processor

F. S. Schifano (Univ. and INFN of Ferrara)

The AuroraScience Project

November 25-26, 2009 17 / 24

э

イロン イロン イヨン イヨン

The AuroraScience 3D-torus network processor

Status:

- the link components (fifo, memory, etc) has been ported from Xilinx (QPACE) to Altera environment
- the not-open modules of the QPACE NWP design has been removed
- synthesys and test of the torus with all 6 links under Altera environment has been done
- a 8-lane GEN1 pci-express interface has been implemented and tested
- a basic linux-driver and user low-level library for communications is available
- preliminary communication tests are running

3

イロト イポト イラト イラト

Atnw2 Resouces Occupation

; Fitter Summary	
; Fitter Status ; Quartus II 64-Bit Version ; Revision Name ; Top-level Entity Name ; Family ; Device ; Timing Models ; Logic utilization ; Combinational ALUTs	<pre>; Successful - Mon Nov 9 10:42:28 2009 ; 9.0 Build 132 02/25/2009 SJ Full Version ; topHw ; topHw ; Stratix IV ; EP4SGX230KF40C2ES ; Preliminary ; 17 % ; 22,194 / 182,400 (12 %) ; 120 / 91,200 (< 1 %)</pre>
; Dedicated logic registers	
	; 0 ; 1,106,865 / 14,625,792 (8 %)
; Total GXB Receiver Channel PCS ; Total GXB Receiver Channel PMA	; 8 / 24 (33 %) ; 8 / 36 (22 %)
; Total GXB Transmitter Channel PCS ; Total GXB Transmitter Channel PMA ; Total PLLs ; Total DLLs	

Torus box requires 20911 logic-elements (11% of FPGA) and \approx 1 Mbit of memory (5% of FPGA)

イロト イヨト イヨト イヨト

ATNW2 Processor Interface

Configuration:

- based on single 8-lane GEN1 IP, 128-bit @ 125 MHz, 2 GB/s
- 1 64-bit (prefetchable) BAR mapping all send fifos
- 1 32-bit BAR mapping all status/monitor/debug/config registers
- CPU writes data to FPGA send-fifos
- include a DMA engine to move data from FPGA to CPU (memWrite)

Improvements:

- 2 8-lane GEN2 IP, 128-bit @ 250 MHz, 8 GB/s
- implement DMA engine to move data from CPU to FPGA (memRead)

イロト イポト イヨト イヨト 二日

ATNW2 Throughput Details

- one item (16B) every 152 ns (19 τ @ 8 ns)
- one packet every 1.2 µsec
- fly-time inside TNW, including cable, is 630 ns

ATNW2 Transfer Time

ATNM2 Transfer-Time / Bandwidth

red line is fit by T(x) = 2.44 + 0.0098 * x.

F. S. Schifano (Univ. and INFN of Ferrara)

The AuroraScience System

Processor	Nehalem/Westmere Sandy Bridge	
Node Card	2 Processors	
	100-150 Gflops* ≈400 Gflops*	
	270 W	
Chassis	16 Node Card	
	1.6-2.4 Tflops* \approx 6.4 Tflops*	
	4.3 kW	
half-Rack	8 Chassis	
	12.8-19.2 Tflops* \approx 50 Tflops*	
	34.4 kW	
Rack	16 Chassis	
	25.6-38.4 Tflops* ≈100 Tflops*	
	70 kW	

* double-precision peak

Relevant installation but not leading-edge for the LQCD community.

伺 ト イ ヨ ト イ ヨ ト