GPGPU
in Theoretical Physics

F. D1 Renzo
University of Parma and I.N.F.N.

Napoli, Jan 25t" 2010

Not really a review. Keep in mind instead that

we like novels more than dictionaries

Available online at www.sciencedirect.com

“2* ScienceDirect Computer Physics

Communications

ELSEVIER Computer Physics Communications 177 (2007) 631-639

www.elsevier.com/locate/cpc

Lattice QCD as a video game One of the pioneering papers

Gy6z6 1. Bgri?, Zoltan Fodor “>*, Christian Hoelbling ®, Sandor D. Katz *°, Déniel Nogradi °,
Kélmén K. Szab6®

A Institute for Theoretical Physics, Eotvés University, Budapest, Hungary
b Department of Physics, University of Wuppertal, Germany
¢ Department of Physics, University of California, San Diego, USA

Received 2 February 2007; received in revised form 29 May 2007; accepted 7 June 2007
Available online 15 June 2007

Abstract

The speed, bandwidth and cost characteristics of today’s PC graphics cards make them an attractive target as general purpose computational
platforms. High performance can be achieved also for lattice simulations but the actual implementation can be cumbersome. This paper outlines
the architecture and programming model of modern graphics cards for the lattice practitioner with the goal of exploiting these chips for Monte
Carlo simulations. Sample code is also given.
© 2007 Elsevier B.V. All rights reserved.

« s
ON GPUSs:
CoOST EFFECTIVE

SUPERCOMPUTING
A review talk at the 2009 Lattice Conference =

CENTER FOR COMPUTATIONAL SCIENCE
BOSTON UNIVERSITY

Tuesdav. Auaust 4. 2009

Nowadays proof of existence (according to my friend Lele Tripiccione):
1s there a web page? http://gpgpu.org

ﬁil

General-Purpose Computation on Graphics Hardware

Forums Developer | Search

You are here: Home » About What is GPGPU?

About GPGPU .Ol"g GPGPU stands for General-Purpose

computation on Graphics Processing Units.
Graphics Processing Units (GPUs) are high-

GPGPU stands for General-Purpose computation on Graphics Processing Units, also known as GPU
pas P P S performance many-core processors that

Computing. Graphics Processing Units (GPUs) are high-performance many-core processors capable of very

high computation and data throughput. Once specially designed for computer graphics and difficult to can be used to accelerate a wide range of
program, today’s GPUs are general-purpose parallel processors with support for accessible programming applications. GPGPU.org is a central
interfaces and industry-standard languages such as C. Developers who port their applications to GPUs often resource for GPGPU news and information.
achieve speedups of orders of magnitude vs. optimized CPU implementations. The goal of GPGPU.org is to Learn more.

catalog the current and historical use of GPUs for general-purpose computation, and to provide a central
resource for GPGPU software developers.

Contribute
The term GPGPU was coined and GPGPU.org was founded by Mark Harris in 2002 when he recognized an
early trend of using GPUs for non-graphics applications. GPGPU.org has grown from an obscure site visited GPGPU.org relies on news submissions
by few into a popular destination for developers and researchers. from readers like you.

Hosting for GPGPU.org is kindly provided by ibiblio. Many of the developer pages were created with the
untiring assistance of Dominik Goddeke.

Have news? Submit It!

We can try to look for Science, Physics, Theoretical Physics ...

A

General-Purpose Computation on Graphics Hardware

Forums Developer

GPU Simulations of Gravitational Many-body Problem and GPU
Octrees

January 20th, 2010

This undergraduate thesis and poster by Kajuki Fujiwara and Naohito Nakasato from the University of Aizu
approach a common problem in astrophysics: the many-body problem, with both brute-force and
hierarchical data structures for solving it on ATl GPUs. Abstracts:

Fast Simulations of Gravitational Many-body Problem on RY770 GPU
Kazuki Fujiwara, Naohito Nakasato (University of Aizu)
Abstract:

The gravitational many-body problem is a problem concerning the movement of bodies, which are
interacting through gravity. However, solving the gravitational many-body problem with a CPU takes a
lot of time due to O(N"2) computational complexity. In this paper, we show how to speed-up the
gravitational many-body problem by using GPU. After extensive optimizations, the peak performance
obtained so far is about 1 Tflops.

Oct-tree Method on GPU
N.Nakasato
Abstract:

The kd-tree is a fundamental tool in computer science. Among others, an application of the kd-tree
search (oct-tree method) to fast evaluation of particle interactions and neighbor search is highly
important since computational complexity of these problems are reduced from O(N"2) with a brute
force method to O(N log N) with the tree method where N is a number of particles. In this paper, we
present a parallel implementation of the tree method running on a graphic processor unit (GPU). We
successfully run a simulation of structure formation in the universe very efficiently. On our system,
which costs roughly $900, the run with N ~ 2.87x10"6 particles took 5.79 hours and executed 1.2x10"13
force evaluations in total. We obtained the sustained computing speed of 21.8 Gflops and the cost per
Gflops of 41.6/Gflops that is two and half times better than the previous record in 2006.

Posted in Research | Tags: Astrophysics, Data Structures, Papers, Posters | Write a comment

| search

What is GPGPU?

GPGPU stands for General-Purpose
computation on Graphics Processing Units.
Graphics Processing Units (GPUs) are high-
performance many-core processors that
can be used to accelerate a wide range of
applications. GPGPU.org is a central
resource for GPGPU news and information.
Learn more.

Contribute

GPGPU.org relies on news submissions
from readers like you.

Have news? Submit It!

Subscribe

Entries RSS
Comments RSS
Twitter feed

Categories

Business (51)

Developer Resources (170)
Events (98)

Press (39)

Again on gpgpu.org, let’s have a look at programming environments

GPGPU Programming

The GPGPU programming landscape has rapidly evolved over the past several years, so that now there are
several approaches to programming GPUs. Recently, convergence towards standardization has begun.
Readers are recommended to browse the available material to make their own decisions on which approach
to use.

NVIDIA CUDA, AMD Stream and OpenCL

GPU Computing really took off when CUDA and Stream arrived in late 2006. These are programming
interfaces and languages, designed by the GPU vendors in close proximity with the hardware, that
constitute a tremendous step towards a usable, suitable, scalable and manageable future-proof
programming model. Learn more about AMD Stream. Learn more about NVIDIA CUDA.

The Open Compute Language (OpenCL) is designed to provide a unified APl for heterogeneous computing on
several kinds of parallel devices, including GPUs, multicore CPUs and the Cell Broadband Engine. Learn
more about OpenCL.

Sh and Brook for GPUs

High-level languages and programming environments for GPUs, in particular BrookGPU from Stanford
University and Sh from the University of Waterloo were precursors to todays solutions like CUDA and
OpenCL. Sh has been commercialized by its developers into RapidMind and BrookGPU has served as the
basis for AMD’s Stream. Learn more about BrookGPU and Sh.

Legacy GPGPU: Graphics APIs

In the early days, GPGPU programming was a bit hacky. Algorithms had to be cast in terms of graphics APIs
such as OpenGL and Direct3D; the underlying hardware was not fully exposed or documented; and the
programming was sometimes unproductive. Despite all this, a lot of ground-breaking research has been
accomplished that helped pave the way to what GPU computing is now. Despite their legacy status, these
older tutorials and sample applications still have some value. Learn more about legacy GPGPU.

GPGPU Tutorials

Supercomputing 2009 CUDA Tutorial
PPAM 2009 GPU and OpenCL Tutorial
ISC 2009 CUDA Tutorial

ASPLOS 2008 CUDA Tutorial
SUPERCOMPUTING 2008 Tutorial
SUPERCOMPUTING 2007 Tutorial
SIGGRAPH 2007 GPGPU Course
SUPERCOMPUTING 2006 Tutorial
IEEE Visualization 2005 Tutorial
SIGGRAPH 2005 GPGPU Course

IEEE Visualization 2004 Tutorial
SIGGRAPH 2004 GPGPU Course

Interactive
visualization of
volumetric white
matter connectivity

Financial simulation
of LIBOR model with
swaptions

lonic placement for
molecular dynamics
simulation on GPU

GLAME@lab: an M-
script APl for GPU
linear algebra

Transcoding HD video

stream to H. 264

Ultrasound medical
imaging for cancer
diagnostics

Fluid mechanics in
Matlab using .mex file
CUDA function

Highly optimiz ed
object oriented
molecular dynamics

to NVIDIA web pages: examples of CUDA applications

Astrophysics N-body
simulation

Cmatch exact string
matching to find
similar proteins and
gene sequenc es

As I told you, the style is not really that of a review
I will basically concentrate on one type of applications (lattice),
but I will try to make quite general comments

® It’s a SIMD business!

An example from Statistical Mechanics: Hybrid Monte Carlo
for a spin model (keeping an eye on Lattice Gauge Theories)

It’s a SIMD business, but one does not deal in general with
embarassing parallelism (synchronizing is an 1issue)

New GPGPU programming environments vs legacy GPGPU
What can we learn from Lattice QCD?

A single mention of a completely non-lattice application

Conclusions

We said it’s a SIMD business

Single Instruction Multiple Data: problems with a huge
number of degrees of freedom, each roughly undergoing the
same “dynamics”.

A rough (and personally biased) distinction: lattice vs non-
lattice applications (canonical example of the latter type:
Molecular Dynamics).

SIMD/MIMD classification emphasyses the two main characters
on the stage: FLOPS and BYTES. There are in general a given
Flops/Bandwith ratio and a desired one!

Who 1is the director 1in your program? Notice that these
devices do not run an 0S, so in general programming paradigm
1s that of number-crunching accelerators.

As a byproduct there are in general 2 bandwiths to take into
account (inside the device and CPU-GPU).

And here we go with the example: 2d XY spin model

H:—JE s,--sj:—JE cos(0; —6;). LIl iiLlllll
ij i i amnmaemEs

000000000000

Il modello XY come un video gioco

Candidato Giovanni Conti

Relatore Dott. Francesco Di Renzo
Universita di Parma
https://www.fis.unipr.it

28 Febbraio 2008

It’s a basic prototype of a LATTICE problem

N—oo

1
Typical problem: compute by Monte Carlo N :E: O(Xi) — (O)p
i=1

A good proptotype computation: Hybrid Monte Carlo. Configurations are generated

via a fictitious hamiltonian system

2
H=Y - +50)
— 2
]
Fictitious momenta are gaussian

> 5(0i) = BH(0;),

H = —JZST,--sz —JZCOS(Q;—HJ-).

Given the spin (angles) configuration, one extracts momenta and then obtains a
new (extended) configuration {9;7ﬂ4}

: 224971[9,ﬂ]

via a Hamiltonian flux 0

~ OH[H, 7]
37T,' 7 = 89,' .

New (angles) configuration will be eventually accepted/rejected.

The equations for angles are LOCAL, those for angles are NOT LOCAL!

So, how do we SIMD-solve a prototype LATTICE problem?

First step: a collection of sublattices

L]]
i ool 00
NP-2|NP-1
But there 1is a nn interaction! Borders - |NP-2|NP-1 il 000
L]]
T, DI:D
D D By the way: usually one wants to optimize memory
~ [NP-2|NP-1 _I B
LI 1] | .
CIEI 00 OOc -
Borders exchange 1s a sinchronization issue! ’
Typically, one wants to hide latencies with /
computations.
ool 00 OO -
I 1 | .

The typical CUDA solution (I)

The CUDA environment by nVIDIA is a quite natural R

exploitation of the typical GPU architecture ' ;
P
Aml

Notice the memory hierarchy! Shared memory enables
nn communications and synchronization ...

Processor1 Processor2 *°*°

===

('c';?"i'y"', | Bock ‘ Block
/im;’ ﬁ ~ CUDA basics: grid of blocks and blocks of threads
; d Assign spins to threads and sublattices to blocks

Cmlock(L1)

Since a block 1s assigned to a given multiprocessor one
1s done with local data sharing and synchronization

Resources are finite and blocks are sliced into warps

The typical CUDA solution (II)

In general for any given (not only lattice!) problem, we can better
understand the issue of data-sharing and synchronization by inspecting nVIDIA
picture for that (we can now think for example of a MD problem)

per-thread
local memo Local barrier

Global barrier

Legacy GPGPU: talk to GPU as 1f you were drawing

{———* In the end, why are GPU efficient? Because

g '{Mwm-[?ﬁﬁ {;me{ézm: computer graphic needs a lot of work!
i ' Efficiency 1s nowadays obtained by a HW
|wm graphic pipeline.

|
11

There 1s a lot of work involved in getting from a 3d T “TH
image to a 2d bitmap. Roughly speaking, in the end | T
one needs a bunch of bits on a display and that’s why
basic datatype are textures (4 components for colors)

>]

o [

In the OpenGL environment one can make use of the GSGL shading language
a) a kernel 1is “enabled” to enter the graphic pipeline

b) input means binding textures to texture units, output means binding
target texture to a FBO

c) one pipeline stage is input for the following: RW restrictions! PING PONG

Theoretical Physics in OpenGL...

Texels can be your spins and texels make a texture like [;{]ﬁ
spins make a lattice. O

r
11

1 1
» [17

An RGBA texture accomodate 4 replicas of a lattice and nn
(which are 4 in 2d) can be mapped to a texture as well. 1 1

80

T
00

70F g+ °
il 4 | Efficiency is not at all bad!
00

o

*r ° 1 Xx-axis 1s lattice size, y-axis 1s gdin
< o . .

s} " | with respect to a given serial code.

-4
30} * o o °

Blue point are OpenGL simulations
20 1 (-]

Red point CUDA simulations

1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

What do we learn in general from QCD? (I)

The spin example was made of not so many degrees of freedom... A typical
problem in LQCD is the application of the Wilson-Dirac operator

¥
Yhi() = Yo { Ud(x) (1++2°) vz + i)

+ U (z — 1) (1 =~37) dgi(z—p) }

(]Z?(kt) 3x3 complex matrices, residing on links
af

Vi 4x4 complex matrices, sparse (4 complex)

@Dai(af) 4x3 complex (spin-color), residing on sites

All toghether, 1320 FP on (9x12+8x9 complex) 360 FP words per site.

What do we learn in general from QCD? (II)

LQCD 1s a good place to point out a couple of strategies often useful 1in our
problems

® We have to rely on a HUGE Flops/Bandwith ratio, so a typical
trick 1s to get slimmer data trading data for computations

12 number parameterization (Egri et al)

Bytes 1440 --> 1152

(a1 ar as) (a1 az as b

b1b2b3 q b:ib> b ¢ = (ax

Giics 05 e Flops += 384

® SP/DP ... precision 1is an issue! GPU slow down quite a lot

MULTIPRECISION schemes ...

a short Summary

Only prototypes computations presented, to set up a picture ...

... so first of all we add: not only lattice and non-lattice;
also completely different problems (Feynman graphs!)

Mainly very efficient number-crunching accelerators
Notice that we did not refer to scaling to “many-GPU”

World is not finished with CUDA (AMD Stream; OpenCL; Larrabee 1is
coming!). But also OpenGL 1s probably not dead...

