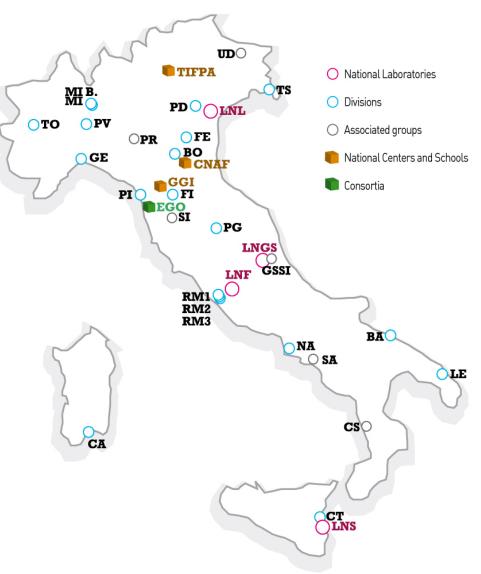


La Sezione INFN di Perugia nel 2019


Patrizia Cenci - 17 dicembre 2019

INFN Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

- INFN è l'ente dedicato allo studio dei costituenti fondamentali della materia
- svolge ricerca nel campo della fisica nucleare, subnucleare e astro-particellare
- favorisce l'innovazione, promuovendo il trasferimento al mondo produttivo e alla società delle conoscenze e tecnologie acquisite
- opera nell'ambito di collaborazioni internazionali
- al tempo stesso, è fortemente presente sul territorio nazionale

La Sezione INFN di Perugia

Istituto Nazionale di Fisica Nucleare

- Gruppo Collegato INFN dal 1981 (prof. G. Mantovani)
- Fondata nel 1989, ha sede all'interno del dipartimento di Fisica e Geologia dell'Università degli studi di Perugia
- Eccellente percorso di crescita nel corso degli anni
- Ad oggi conta 31 dipendenti a tempo indeterminato:
 - 15 ricercatori
 - 2 tecnologi
 - 9 tecnici
 - 5 amministrativi

Direttori:

1989 – 1995 Prof. Giancarlo Mantovani

1995 – 2001 Prof. Claudio Ciofi degli Atti

2001 – 2007 Prof. Roberto Battiston

2007 – 2015 Dott. Pasquale Lubrano

2015 – 2019 Prof. Maurizio Maria Busso

In carica Dott. Patrizia Cenci

3

INFN La Sezione INFN di Perugia

- 1989: Sezione INFN di Perugia, prime attività:
 - fisica sperimentale: CERN (UA2), SLAC (SLD)
 - fisica teorica: studio del nucleo e delle interazioni fondamentali
- 2019: presenti tutte le aree di ricerca dell'INFN
 - 31 dipendenti,
 - 11 titolari di borsa di studio o assegno di ricerca INFN
 - 121 associati (UniPG, UniCAM, IOM-CNR, INAF)
 - Bilancio: circa 4 Milioni di Euro
 - In costante crescita le attività e i progetti finanziati con fondi esterni

INFN CSN1: fisica delle particelle

Istituto Nazionale di Fisica Nucleare

- **CSN1 dell'INFN:** studio delle interazioni dei costituenti fondamentali della materia attraverso esperimenti con gli acceleratori di particelle.
- Linea di ricerca presente sin dall'inizio delle attività della sezione
 => esperienza consolidate in attività di ricerca della CSN1 e nella progettazione e costruzione di rivelatori innovativi e nelle attività di calcolo scientifico connesse
- La Sezione ha importanti responsabilità sia nella realizzazione di rivelatori di particelle che nelle analisi dei dati dei processi di fisica.

CERN (CH):

CMS @ LHC

LHCb @ LHC

NA62 @ SPS

SuperKEKB (JP):

Belle2

BEPC II (CN):
BES III

Il Modello Standard (oggi)

Istituto Nazionale di Fisica Nucleare

Attività CSN1 a Perugia => quadro attuale del Modello Standard.

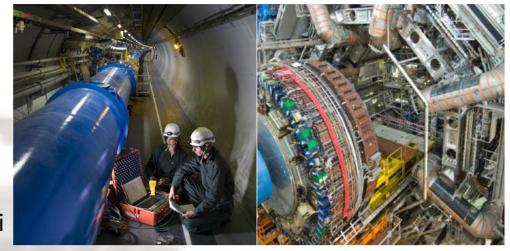
Conseguiti nel tempo risultati notevoli:

- Scoperta dei bosoni W e Z0 (1983)
- Misure di precisione delle proprietà dello ZO
- Studi di fisica del sapore (quark)
- Studi di violazione di simmetrie
- Misura di decadimenti molto rari (UA2, SLD, L3, NA48, NA62, CMS, Belle2)

Ultima frontiera: LHC

⇒ Scoperta del bosone di Higgs (CMS, 2012)

In parallelo: sviluppo di tecnologie di frontiera per nuovi rivelatori dalle prestazioni sempre più elevate richiesti per le misure a LHC



Futuro della CSN1 a Perugia

Istituto Nazionale di Fisica Nucleare

LHC: è l'acceleratore di particelle più grande e potente che esiste, per studiare gli oggetti più piccoli che conosciamo

⇒ risposte a domande fondamentali sulla origine dell'universo, le forze che lo regolano, i componenti ultimi della materia,

- Previsto il potenziamento di LHC con fasci più intensi => HL-LHC (>2027)
- In corso il potenziamento dei rivelatori per le prossime campagne di raccolta dati (2021-2024 e 2027-2029)
- Nuova sfida dal punto di vista tecnologico: attività intensa a Perugia per il miglioramento dei rivelatori in vista di HL-LHC (CMS e LHCb)

CSN2: fisica astro-particellare e fisica fondamentale

CSN2 dell'INFN: ricerca nel campo delle astro-particelle e della fisica fondamentale. Quattro settori di indagine (comunicanti)

Fisica del Neutrino

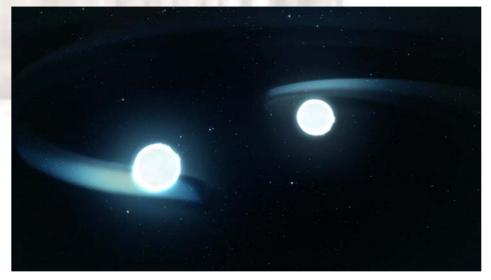
Onde Gravitazionali, Gravità e Fisica Quantistica Radiazione dall'Universo

L'Universo "Oscuro"

CSN2 a Perugia

Perugia ha un ruolo rilevante e talvolta leader sul piano nazionale

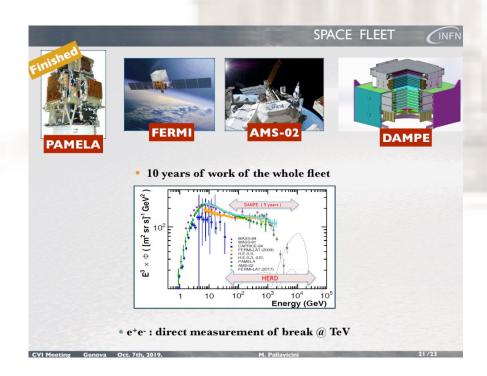
e internazionale in due settori: Damp **AMS CTA** e/Herd Fermi Bore Radiazione Fisica del Neutrino dall'Universo ET Humor Onde Gravitazionali, L'Universo Dark Gravità e Fisica Virgo "Oscuro"


Quantistica

Onde Gravitazionali e Astronomia Multimessaggera

- 100 anni dopo la predizione di Albert Einstein (1916) sono state rivelate, nel 2015, le onde gravitazionali (Nobel in Fisica del 2017)
- Il completamento del network mondiale di rivelatori di onde gravitazionali ha permesso, grazie a Virgo, di determinare la localizzazione della sorgente delle onde negli eventi di collisione di buchi neri o stelle di neutroni
- La sinergia tra rivelatori di onde gravitazionali e quelli di fotoni ha aperto una nuova frontiera: l'astronomia multi-messaggera con onde gravitazionali
 - INFN Perugia è al centro di tale rivoluzione grazie a Virgo e Fermi

GW170817: coalescenza di due stelle di neutroni «sentita» da Virgo e LIGO e vista da Fermi e da un'altra settantina di telescopi e satelliti con osservazioni dalle onde radio ai raggi gamma

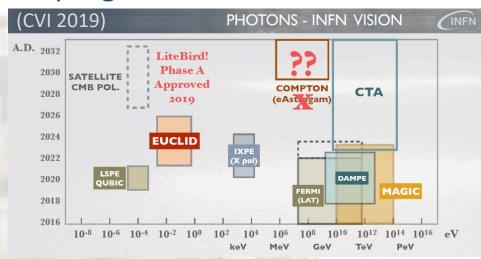


Astronomia multi-messaggera a Perugia

Astronomia multi-messaggera: nuovo scenario di ricerca che combina misure di astroparticle e di onde gravitazionali

- Raggi cosmici: AMS e Dampe
- Fotoni e onde gravitazionali: Fermi e Virgo

Tutti esperimenti presenti a perugia



Futuro della CSN2 a Perugia

Ruolo primario di Perugia anche in progetti futuri della CSN2:

- CTA + Herd (successore di Dampe-AMS)
- **ET Telescope:** osservatorio di onde gravitazionali di terza generazione
 - Collaborazione pan-Europea,
 competizione fra Italia e Olanda
 nell'ospitare il sito
 - Ambizione: entrare nella roadmap
 ESFRI → attività a livello governativo
 - A Perugia c'è il coordinamento nazionale ed internazionale di ET
 - Lunga sfida che parte ora e si concretizzerà nel 2030-2035

CSN3: struttura e dinamica della materia nucleare

La CSN3 a Perugia: istituita nel 2009.

Origini: calcoli teorici in esperimenti di astrofisica nucleare (nucleosintesi stellare)

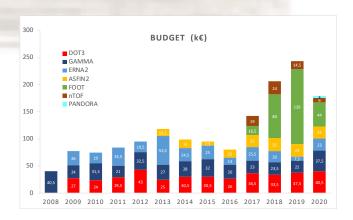
Evoluzione: progressiva crescita dell'attività sperimentale di misura e di sviluppo di rivelatori per spettroscopia nucleare e radioprotezione


Oggi: esperimenti di astrofisica nucleare, struttura nucleare, fisica nucleare applicata

Futuro: misure di astrofisica nucleare e spettroscopia dei nuclei esotici con sorgenti di nuclei instabili radioattivi => complemento importante nel campo della astronomia multi-messaggera

La CSN3 a Perugia

2009


Apertura ufficiale del Gruppo 3 presso la sezione di Perugia.

ASFIN2

ERNA2, GAMMA

2003

Apre GAMMA (gruppo collegato di Camerino)

CSN2: fisica teorica

Linee di ricerca e progetti della CSN4 a Perugia

Teorie di gauge e dei campi GAST (Gauge and String Theories) Fisica Nucleare e Adronica
NINPHA
(National Initiative for Nuclear
and Hadronic Physics)

Metodi Matematici

BioPhys

Fisica Statistica e teoria di campo applicata PLEXNET

Altri settori di studio: Fisica delle interazioni fondamentali (fisica adronica ad altissime energie: LHC, HL-LHC e ai grandi acceleratori futuri); Superconduttività => sinergia con i gruppi sperimentali (onde gravitazionali e astronomia multi-messaggera, fisica delle interazioni fondamentali)

CSN5: ricerca tecnologica e sviluppo

CSN5 dell'INFN: coordina le ricerche tecnologiche e lo sviluppo di applicazioni e promuove l'utilizzo di strumenti, metodi e tecnologie della fisica fondamentale in altri settori.

Quattro settori principali di indagine:

Rivelatori di particelle

Acceleratori di particelle

Elettronica e software

Applicazioni interdisciplinari della tecnologia INFN

CSN5 a Perugia

Perugia ha un ruolo rilevante in diversi settori della CSN5:

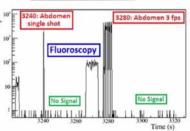
- 1. interdisciplinare, per applicazioni in ambito medico:
 - sensori 3D al diamante per dosimetria su fasci per uso radioterapeutico
 - dosimetria in tempo reale per medici di radiologia interventistica
 - sviluppi di chirurgia radioguidata con elettroni (decadimenti beta-)

2. sviluppi tecnologici per rivelatori di particelle

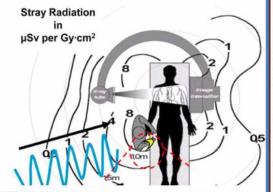
- rivelatori di Silicio Amorfo in tecnologia 3D per uso in ambienti con alta radioazione di fondo (HL-LHC o monitor di fasci di particelle)

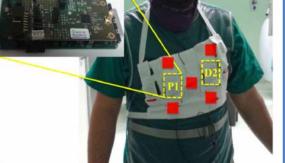
3. applicazioni e sviluppi di calcolo avanzato e quantum technology

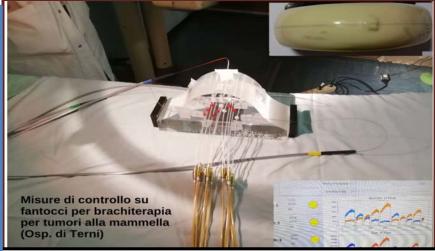
Ottenuti: 1 brevetto internazionale, 2 brevetti nazionali in corso proposta di brevetto nazionale e internazionale

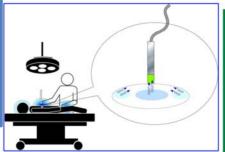


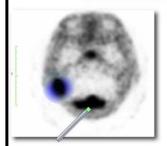
Attività CSN5 a Perugia settore interdisciplinare


Istituto Nazionale di Fisica Nucleare

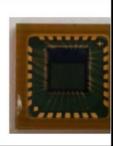

Dosimetria in tempo reale per medici di Radiologia Interventistica




Ospedali di Foligno, Perugia, Terni



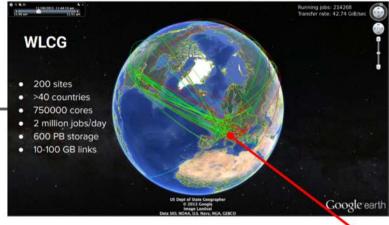
Sonda per Chirurgia Radioguidata con tracciatori

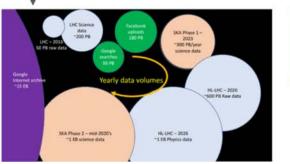


- Controllo in tempo reale o residui di tessuto tumora dopo la rescissione.
- Ridurre esposizione del personale medico a radiazioni gamma.

Uso come rivelatori di elettroni di sensori di immagine (fotocamere)

(Policlinico Gemelli, IEO)




Calcolo Scientifico INFN

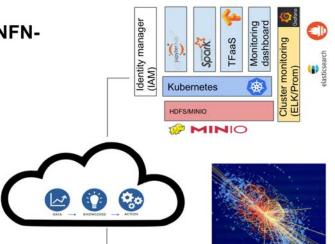
Istituto Nazionale di Fisica Nucleare

Nasce dalla spinta di creare sistemi efficienti di analisi dei big data richiesti dagli esperimenti di LHC e dalle esigenze crescenti degli esperimenti di nuova generazione => calcolo distribuito => WWLCG

Italian Contribution about 10%

Calcolo Scientifico a Perugia

Istituto Nazionale di Fisica Nucleare

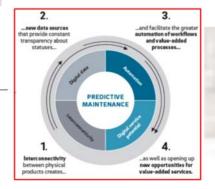

Perugia è un nodo GRID dal 2003 sorto per analizzare dati di CMS

Disponibili oltre 200 CPU per il calcolo parallelo e distribuito e oltre 50TB di spazio disco

Big Data at INFN-Perugia

Development of Cloud Computing platforms and applications for Big Data processing supporting

- Scientific Computing
- Non-physics communities


Artificial Intelligence at INFN-Perugia

Development of **Machine Learning techniques** for Operational Intelligence applied to systems and services

 enabling the smart automation

Management and development of technologies to support **Internet of Things**

 From sensors to predictive maintenance of services

Perugia ricopre un ruolo rilevante sul piano nazionale e internazionale in due settori: Big data e Intelligenza Artificiale

Conclusioni

- La Sezione INFN di Perugia è vitale e dinamica
 - Attività di ricerca INFN, sia sperimentale che teorica, ampia e diversificata
 - Notevole attività di sviluppo tecnologico applicativo ed interdisciplinare
 - Capacità di attrarre e gestire fondi esterni (Progetti Europei, fondi MIUR, MAECI ...)
 - Interessanti prospettive per la ricerca dei prossimi anni a breve, medio e lungo termine
- La stretta collaborazione con i colleghi dell'Università di Perugia e la sinergia dell'attività dei servizi tecnici costituiscono una fondamentale ottimizzazione di risorse alla base dei successi ottenuti nella ricerca e va salvaguardata con cura
- Importante mantenere l'attività della Sezione al livello
 - consolidare la situazione dei servizi tecnici raggiunto
 - attrarre un numero crescente di giovani nelle attività di ricerca dell'INFN e contribuire al potenziamento della loro formazione (scuola di dottorato in fisica)
 - potenziare le attività di ricerca di punta per mantenere e accrescere competenze ed esperienza già presenti nei settori di strategici della ricerca futura dell'ente
 - continuare a potenziare le risorse per la ricerca con fondi esterni
 - continuare a crescere in termini di risorse umane e di qualità dei risultati

Grazie a tutti coloro che hanno contribuito al successo di questa festa Grazie a tutti i presenti