L'attività italiana in EIC_NET: progetti di R&D

A. Celentano per la collaborazione "EIC Italia" (con enorme contributo di tutti i colleghi impegnati in questa attivita')

Introduction

EIC_NET ongoing R&D activities are focusing on 3 main topics, all critical for a future EIC detector:

- Particle ID with RICH detector
 - High-momentum RICH: dual radiator / gas windowless
 - Modular RICH
- Triggerless readout system with a streaming architecture
- Electromagnetic calorimetry

All the activities benefit from the strong knowledge of the Italian groups, and are coordinated with the international EIC community within the US program for a generic EIC R&D

PID in EIC

PID is a crucial element for the future EIC detector

Rapidities / angles follow HERA convention

Expected particles distributions as a function of momentum for different rapidity intervals

The large momentum range and the high particle multiplicities call for a **very strong PID efficiency and purity**, achievable only with complementary techniques depending on the kinematic range.

Three main approaches are foreseen, depending on the momentum range:

- Barrel, low momentum (< 6 GeV/c):
 - DIRC-approach
- Backward, low momentum (<10 GeV/c):
 - Modular-RICH approach
- Forward, high momentum (~ 50 GeV/c):
 - Dual-radiator RICH
 - Gas-radiator RICH with windowless readout

All proposed EIC detector concepts incorporate different RICH detectors for PID in almost all kinematic regions

JLAB-JLEIC

Three main approaches are foreseen, depending on the momentum range:

- Barrel, low momentum (< 6 GeV/c):
 - DIRC-approach
- Backward, low momentum (<10 GeV/c):
 - Modular-RICH approach
- Forward, high momentum (~ 50 GeV/c):
 - Dual-radiator RICH
 - Gas-radiator RICH with windowless readout

All proposed EIC detector concepts incorporate different RICH detectors for PID in almost all kinematic regions

BNL - BEAST

Three main approaches are foreseen, depending on the momentum range:

- Barrel, low momentum (< 6 GeV/c):
 - DIRC-approach
- Backward, low momentum (<10 GeV/c):
 - Modular-RICH approach
- Forward, high momentum (~ 50 GeV/c):
 - Dual-radiator RICH
 - Gas-radiator RICH with windowless readout

All proposed EIC detector concepts incorporate different RICH detectors for PID in almost all kinematic regions

BNL – sPhenix EIC

Three main approaches are foreseen, depending on the momentum range:

- Barrel, low momentum (< 6 GeV/c):
 - DIRC-approach
- Backward, low momentum (<10 GeV/c):
 - Modular-RICH approach
- Forward, high momentum (~ 50 GeV/c):
 - Dual-radiator RICH
 - Gas-radiator RICH with windowless readout

All proposed EIC detector concepts incorporate different RICH detectors for PID in almost all kinematic regions

ARGONNE - TOPSIDE

Dual-radiator RICH

The challenge: h-PID ad large momentum using known techniques (LHCb, COMPASS,...) requires both extended radiators and PMT-like photodetectors: critical for space requirements and operations in high B field

The possible solutions:

- Visible-light dual-radiator RICH
 - R&D required on photodetectors (LAPPD? SiPM?)
- Far-UV RICH with windowless CsI-based gas photodetector
 - Exploits the $1/\lambda^2$ number of photons
 - Use interferometric mirrors to select narrow λ range
 - R&D required on photodetectors

INFN activity exploiting both-options (within EIC R&D WP6 – particle ID):

- Windowless gas RICH:
 - Development of MPGD-based photo-detectors with a CsI photocatode, starting from the successful experience of COMPASS
 - MGPD properties optimization for EIC requirements: cells size, gain, ...
 - Investigation of alternative approaches for photocathodes manufacturing: diamond powders ("blue sky investigation", INFN-CSN5, experiment "IDEA")
- Dual-radiator RICH:
 - Optimize design (radiators / dimensions) for wide momentum coverage
 - Investigating sector-based focusing to reduce photosensors area

INFN R&D activity: gas RICH with windowless readout

2017-2018: construction and characterization of a small-scale prototype with 3x3 mm² readout pads to investigate new MPGD solutions.

Hybrid MPGD: two-layers GEM + Micromegas readout by SRS(R&D51) with APV25 FE

INFN R&D activity: gas RICH with windowless readout

Prototype assembly

2018-2019: prototype characterization with test-beam @ CERN Fused-silica radiator setup

Fused-silica radiator

fused silica radiator

Signals from APV25 readout ASIC

SRS is read-out by the new "RAVEN" DAQ-system designed to increase the acquisition rate and controlled via an user-friendly dedicated GUI

Reference: 1908.05052

INFN R&D activity: gas RICH with windowless readout

Detector gain from single photon charge distribution slope: **30k**

2018-2019: prototype characterization with test-beam @ CERN

Cherenkov ring well visible after direct-beam hit subtraction On-going analysis to determine detector performances: detector gain, time resolution, cluster-size

INFN R&D activity: dualradiator RICH

Construction and characterization of a dRICH prototype: Aereogel + C_2F_6

- Prototype configuration optimized through Bayesian approach
- Almost overlapping Cherenkov rings to optimize photo-sensitive area
- Dual configuration with remote-controllable shutter

Prototype design

INFN R&D activity: dualradiator RICH

SiPM readout box

Construction and characterization of a dRICH prototype: Aereogel + C_2F_6

- Significant R&D activity on PD and associated readout electronics
 - MA-PMT
 - Well-known detectors (experience from CLAS12 RICH)
 - SiPM
 - Cheaper and more efficient solution
 - Critical item to be investigated: radiation hardness (neutron damage), possibly mitigated with low-T operations / annealing cycles
 - Challenge: cooling integrated into the sensitive readout
 - Readout electronics:
 - Investigating the use of different ASICS, using the well-known MAROC as a reference (for both MAPMT and SiPM)

MAPMT readout box

The challenge: PID in the backward region at intermediate momentum requires compact detectors (small radiation length)

The possible solution:

- Modular RICH with Aereogel radiator, made of independent modules
- Ring-centering of lens-based optics reduces sensors area

INFN activity:

- Investigate the use of Fresnel lens for ring focusing
- Study the performances obtained with different photo-detectors

Traditional approach – two layers proximity focusing

- 9 GeV/c pion beam incident at third quadrant (star) in simulation
- Ring is centered at point of incidence

The challenge: PID in the backward region at intermediate momentum requires compact detectors (small radiation length)

The possible solution:

- Modular RICH with Aereogel radiator, made of independent modules
- Ring-centering of lens-based optics reduces sensors area

INFN activity:

- Investigate the use of Fresnel lens close to the Aerogel for ring focusing
- Study the performances obtained with different photo-detectors
- On-going MC studies to determine effect of mechanical structure (dead materials) on detector noise

New approach – lens focusing

- 9 GeV/c pion beam incident at third quadrant (star) in simulation
- Ring image is center on the middle of the sensor plane

Construction and characterization of a modular prototype with Aereogel radiator

• Compact structure, that can be coupled to different photosensors

Two completed mRICH prototypes

INFN R&D activity: modular RICH

Construction and characterization of a modular prototype with Aereogel radiator

- Beam test at Fermilab (Summer 2018)
 - Tests with both MAPMT and SiPM for readout

INFN R&D activity: modular RICH

Construction and characterization of a modular prototype with Aereogel radiator

- Beam test at Fermilab (Summer 2018)
 - Tests with both MAPMT and SiPM for readout
 - SiPM temperature was controlled with water-cooled Peltier cells

Cherenkov RING image for proton – SiPM (only 3 SiPM matrixes available)

INFN R&D activity: modular RICH

Construction and characterization of a modular prototype with Aereogel radiator

- Beam test at Fermilab (Summer 2018)
 - Tests with both MAPMT and SIPM for readout
 - SiPM temperature was controlled with water-cooled Peltier cells
 - Tests with proton impinging at a tilted angle on the detector plane showed that the Cherenkov ring is visible also in this configuration

Cherenkov RING image for proton impinging at 11 degrees

A streaming readout system for EIC

The challenge: design a modern TDAQ system for the EIC detector, exploiting the existing technological developments on computing / networking

The possible solution: a completely triggerless streaming readout system – no trigger decision is sent back from the TS to the DAQ

INFN activity:

- A new EIC R&D consortium has been formed in 2018, with strong INFN involvement (INFN co-PI)
- Focus on calorimetry as a starting point with new hardware and software solutions
- Specific emphasis on the physics validation of this new approach

Streaming Readout for EIC Detectors Proposal submitted 25 May, 2018

STREAMING READOUT CONSORTIUM

S. Ali, V. Berdnikov, T. Horn, I. Pegg, R. Trotta Catholic University of America, Washington DC, USA
M. Battaglieri (Co-PI)¹, A. Celentano INFN, Genova, Italy
J.C. Bernauer* (Co-PI)², D.K. Hasell, R. Milner
Masachusetts Institute of Technology, Cambridge, MA
C. Cuevas, M. Diefenthaler, R. Ent, G. Heyes, B. Raydo, R. Yoshida
Thomas Jefferson National Accelerator Facility, Neuport News, VA

* Also Stony Brook University, Stony Brook, NY

ABSTRACT

Micro-electronics and computing technologies have made order-of-magnitude advances in the last decades. Many existing NP and HEP experiments are taking advantage of these developments by upgrading their existing triggered data acquisitions to a streaming readout model. A detector for the future Electron-Ion Collider will be one of the few major collider detectors to be built from scratch in the 21st century. A truly modern EIC detector, designed from ground-up for streaming readout, promises to further improve the efficiency and speed of the scientific work-flow and enable measurements not possible with traditional schemes. Streaming readout, however, can impose limitations on the characteristics of the sensors and sub-detectors. Therefore, it is necessary to understand these implications before a serious design effort for EIC detectors can be made. We propose to begin to evaluate and quantify the parameters for a variety of streamingreadout implementations and their implications for sub-detectors by using on-going work on streaming-readout, as well as by constructing a few targeted prototypes particularly suited for the EIC environment.

Streaming readout approach

Triggered approach

- Data path is different from trigger path
- Trigger decision based on a *limited* information ("primitives")
- Requires to re-send back trigger decision from TS to ROC
- "Event" defined at hardware level just after trigger decision – fixed window width

Triggerless approach

- Data path equal to trigger path
- Unidirectional data transmission from ROC
- Trigger decision based on complete detector information, possibly with the SAME offline reconstruction software used offline
- "Event" defined at software level maybe even not necessary: store (reconstructed) hits (high-level observables) with timestamp.

Streaming readout activity @ INFN

A key aspect of the consortium activity is the streaming readout approach validation.

2019: we characterized a matrix of PbWO₄ crystals with cosmic rays, comparing performances obtained from a full streaming readout system with those - for the same detector - from a triggered setup.

- Triggered system: CAEN v1730 digitizers + JLab trigger boards
- Streaming readout-system: Wave-Brd digitizer board + TriDAS software (adapted from KM3 experiment)

Preliminary results demonstrated the high performances of the system

Next steps:

 Characterization of a small PbWO₄ calorimeter with e⁻ beam (sinergy with calorimetry activity)

DAQ comparison: online selection algorithms

Selecting events with hits in coincidence with external plastic scintillator counters can be used to identify cosmic muons trajectories.

- An online trajectory selection trigger was implemented
- Comparing online-selected events with same selection performed in offline reconstruction.

EM calorimetry in EIC

Motivation:

- **Particle identification:** important for discriminating single photons from π^0/η decay and for e-
- **Particle Reconstruction:** driven by need to accurately reconstruct the 4-momentum of scattered electrons at small angles, where the momentum (or energy) resolution from the tracker is poor due to the low $\int Bdl$ value ($\eta < -2$ region)

Requirements:

- Good resolution in angle to at least 1° to distinguish between clusters
- Energy resolution to a few % / \sqrt{E} for measurements of cluster energy
- Ability to withstand radiation down to at least 1° wrt beam line

Calorimeters @ EIC

- Each kinematic region has different key physics observables and detector constraints, thus requiring a different technology
- Many on-going efforts:
 - W/SciFi
 - W/Shashlik
 - Dual-readout Pb/Sc (HCAL)
 - Homogeneous Calorimetry
- PbWO₄ is the leading option for homogeneus calorimetry, although new innovative materials are being tested

Regions and Physics Goals	Calorimeter Design
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% 	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy
 Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Ability to withstand radiation down to at least 2-3 degree with respect to the beam line. Outer EM Cal for -2 < η < 1: Energy resolution to 7%/√E Compact readout without degrading energy resolution Readout segmentation depending on angle
 Barrel/mid: EM Cal Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%) 	 Barrel, EM calorimetry Compact design as space is limited Energy resolution of order 8%/√E +1.5%, and likely better
Ion/Forward: Hadron Cal○Driven by need for x-resolution in high-x measurements○Need Δx resolution better than 0.05○For diffractive with ~50 GeV hadron energy, this means 40%/√E	 Hadron endcap: > Hadron energy resolution to order 40%/√E, > EM energy resolution to < (2%/√E + 1%) > Jet energy resolution < (50%/√E + 3%)

Summary of EIC R&D detector handbook, Calorimetry section

EIC calorimetry with crystals

$\rm PbWO_4$ is the leading option for EIC calorimeters in backward direction ($\eta < -2)$

Requirements:

- Good *angular resolution* to at least 1 degree to distinguish between clusters
- *Energy resolution* < (1.0-1.5 %/√*E*+0.5%) for measurements of the cluster energy
- Time resolution to < 2ns
- Good radiation hardness

Challenges:

- Define a quality assurance protocol to be applied during crystals mass-production to meet above specifications
- Test crystals from different manufacturers and apply this protocol

INFN activity:

- Participate to crystals quality assurance measurements
- Participate to test-beam measurements to confirm crystal performances in a "real" environment

New materials for homogeneous calorimetry

- PbWO₄ crystals are ideal, but also have limitations (light yield) and are expensive (\$15-25/cm³) – very large volume detectors are probably unaffordable
- Glass-based scintillators are a cost-effective alternative to crystals, in particular for regions with relaxed resolution requirements
- INFN is participating in this new R&D activity, together with CUA/VSL/Scintilex
- Our main involvement is the characterization of CUA-manufactured glass samples to extract the main parameters: LY / light transmission / timing

Preliminary results:

- Light transmission of small samples is equivalent or better than PbWO₄ crystals of same dimensions
- Light yield is higher
- Emission spectrum can be tuned with proper dopants
- Radiation hardness is demonstrated

A CSN-V young researchers grant has been proposed (M. Bondi', INFN-CT) concerning ceramic glasses characterization for high-energy calorimetry

Material/ Parameter	PbWO ₄	Sample 1	Sample 2	Sample 3	Sample 4
Luminescence (nm)	420	440	440	440	440
Relative light output (compared to PbWO ₄)	1	35	16	23	11

54000

500

550

Wavelength (nm)

600

650

Scintillating glasses characterization @ INFN

Goal:

- Measure the main parameters of a large number of samples (light yield, rad. length, timing)
- Test different readout options

Infrastructure:

- Starting to assembly three Multi-gap Resistive Plate Chambers (80x160 cm²) to map out material response over large area in short time – synergy with ALICE/EEE
- Using streaming readout boards developed at INFN for EIC streaming readout – compatible with PMT/SiPM/APD
 - Absolute time stamp from readout board allows to correlate hits with cosmic—rays tracks from chambers
- A smaller-scale cosmic ray telescope (including DAQ) is also available, for timing studies (resolution < 100 ps)

Summary and outlook

- INFN is strongly involved in the ongoing EIC R&D activities, focusing on selected topics of critical importance for this future effort
 - PID with RICH detectors
 - Readout system with streaming approach
 - Electromagnetic calorimetry
- All the activities benefit from the strong knowledge of the Italian groups, and are coordinated with the international EIC community within the US program for the generic EIC R&D
- We're looking forward into actively joining the EIC yellow reports preparation with an effective role in the editorial board

Streaming readout activity @ INFN: validation **"Technical validation" process:** Compare between data acquired with "standard" (triggered) and "triggerless" DAQ system (coincidence rates, spectra...) – PbWO₄ matrix exposed to cosmic rays

Triggerless chain:

- Only signals over the waveboard hardware threshold are processed (Hits)
- Event definition and construction by Level 1 (L1) low level software selection algorithm (e.g. OR of crystals Hits)
- Event selection and tagging by Level 2 (L2) algorithm (e.g. clustering, trajectories selection)

Triggered DAQ Chain

- All channels are passed to discriminators
- Discriminator output passed to coincidence module for event definition (OR of crystals)
- All channels waveforms acquired and saved for each trigger – no zero suppression

DAQ comparison: rates

- For both DAQ systems, crystals were calibrated in energy comparing with MC simulations
- Single crystal energy distributions show good agreement above the "triggered" DAQ energy threshold
- Total energy distributions present slight discrepancy in shape due to the triggerless hit threshold

