

La fisica a EIC: base-line e nuove prospettive

giuseppe bozzi Uni Pavia & INFN Pavia

Motivation

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \bar{\psi}_{q} \left(i \partial \!\!\!/ - g A \!\!\!/ + m \right) \psi_{q} - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a}$$

So, why the EIC?

Why #1 : the Nucleon mass

Why #1 : the Nucleon mass

Why #2 : the Nucleon spin

Why #2 : the Nucleon spin

Why #3 : hadronization

confinement intimately connected with fragmentation / hadronization

Why #3 : hadronization

confinement intimately connected with fragmentation / hadronization

How do color charges propagate, shower, hadronize ?

Why #3 : hadronization

confinement intimately connected with fragmentation / hadronization

How do color charges propagate, shower, hadronize ?

Nuclei as femto-detectors of parton showering and hadronization

Where does saturation set in? Is there a universal gluonic matter at high density? How does nuclear matter affect quark & gluon interactions?

Deep-Inelastic Scattering (DIS)

Deep-Inelastic Scattering (DIS)

The Phase Space

The Phase Space

The Phase Space

From Questions to Answers

Uniqueness of EIC

All DIS facilities in the world

However, if we ask for...

Uniqueness of EIC

All DIS facilities in the world

However, if we ask for...

 high luminosity and wide reach in √s

Uniqueness of EIC

All DIS facilities in the world

However, if we ask for...

- high luminosity and wide reach in √s
- polarized lepton & hadron beams
- nuclear beams

EIC stands out as unique facility

Potential of EIC

A glimpse of the expected performance of EIC

see also

INT 2010 arXiv:1108.1713

White Paper EPJ A52 (16) 268, arXiv:1212.1701

Aschenauer et al., arXiv:1708.01527

Collinear Parton Distribution Functions

PDF (x) are functions only of parton longitudinal momentum fraction x 1-dim imaging partons $x P^+$ - plane' P+

Collinear PDF now

- ~2% gluon precision, 1% on sea quarks for x ~ 10^{-2}
- Uncertainty explodes above x=10⁻¹ and below x=10⁻³
- Low x gluon rising in a non-sustainable way at large Q² ... [Note 'Standard' presentation is at Q² = 10 GeV²]

Precision matters!

Precision matters!

Why are we interested in the high-x sea?-one example

Current BSM searches in High Mass Drell-Yan are limited by high-x uncertainties as well as by high-x valence uncertainties

arXiv:16

Collinear PDFs @ EIC

EIC at $\sqrt{s} = 140$ GeV SIDIS e-p with K[±], π [±]

Collinear PDFs @ EIC

EIC at $\sqrt{s} = 140$ GeV SIDIS e-p with K[±], π [±]

EIC at $\sqrt{s} = 140$ GeV Charged-Current DIS

Collinear PDFs @ EIC

$\frac{1}{2}h = \frac{1}{2}NLG + \sum_{i=1}^{N} \frac{L^{2}}{2} + \frac{L^{2}}{2}$ precise determination of polarize precise determination of polarize

generate EIC pseudo-data and fit \rightarrow g₁^q, g₁^g, g₁^g

$\frac{1}{2}h = \frac{1}{2}NLC + \frac{1}{2}L^{2} + \frac{1}{2}$ $\frac{1}{2}he 2Nucleon Signary Spin Puzzle and gluons \rightarrow precision \Delta C$

generate EIC pseudo-data and fit \rightarrow g₁^q, g₁^g, g₁^g

$\frac{1}{2}h = \frac{1}{2}NLC + \sum_{i=1}^{N} \frac{L^{2}}{2} + \frac{L^{2}}{2}$ precise determination of polarize precise determination of polarize

generate EIC pseudo-data and fit \rightarrow g₁^q, g₁^g, g₁^g

Transverse–Momentum Distributions

Transverse-Momentum Distributions

TMD (x, \mathbf{k}_{\perp}) functions of x and parton transverse momentum \mathbf{k}_{\perp}

a new paradigm : 3D - imaging in momentum space

each TMD enters the cross section with a specific dependence on (azimuthal) angles of kinematics → extract them with azimuthal (spin) asymmetries

each TMD enters the cross section with a specific dependence on (azimuthal) angles of kinematics → extract them with azimuthal (spin) asymmetries

chiral odd (quark helicity flip) connected to tensor operator $\bar{\psi}\sigma^{\mu\nu}\psi$

footprint of new physics at higher scale ?

3 independent PDFs

femto-tomography in momentum space

femto-tomography in momentum space

femto-tomography in momentum space

EIC explores larger phase space

- test universality
- test evolution of TMD with Q²
- study matching with pQCD at $P_{\mathfrak{h}_{p}^{T} \rightarrow \widetilde{e}} Q_{\mathfrak{e}t X}^{2}$
- test factorization $e-p \leftrightarrow p-p$
- gluon TMD from e p \rightarrow jet jet X

flavor dependence of k_{\perp} -distribution

can affect extraction of $\mathbf{m}_{\mathbf{W}}$ from q_{T} distribution of W decay at LHC if precision ≤ 10 MeV. Is it W⁺ \neq W⁻?

Bacchetta et al., PLB 788 (18)

EIC for precision EW physics

weak mixing angle (Y.X. Zhao et al., Eur. Phys. J. A53 (2017) 55)

EIC for precision EW physics

-15

-15

-5

0

 ΔM_{W} [MeV]

-10

10

15

5

-15

-15

-5

-10

0

∆M_W- [MeV]

5

10

15

Generalised Parton Distributions

localize partons inside hadron baseline info to study correlations GPD / $\rho \rightarrow MPI$

How to measure GPDs

accessible in exclusive reactions

Compton Form Factors

• factorization for large Q^2 , $|t| \ll Q^2$, W^2

• depend on 3 variables: x, ξ, t

 8 independent GPDs: real functions depending on the parton and target polarization

Im $\mathcal{H}(\xi, t) \stackrel{\text{LO}}{=} \mathcal{H}(\xi, \xi, t)$ Re $\mathcal{H}(\xi, t) \stackrel{\text{LO}}{=} \mathcal{P} \int_{-1}^{1} dx \operatorname{H}(x, \xi, t) \frac{1}{x - \xi}$

Transverse square radius

$$H(x,0,\vec{b}_{\perp}) = \int_{-\infty}^{+\infty} d^{2}\vec{\Delta}_{\perp} H(x,0,t) e^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} - \int_{-\infty}^{+\infty} d$$

$$\langle \vec{b}_{\perp}^{\,2}(x) \rangle = \frac{\int \mathrm{d}^{2} \vec{b}_{\perp} \, \vec{b}_{\perp}^{\,2} \, H(x,0,b_{\perp})}{\int \mathrm{d}^{2} \vec{b}_{\perp} H(x,0,b_{\perp})}$$

x-dependent transverse squared radius

The errors are large, but slowly we are getting some 3D information

Dupré et al., PRD95(2017)011501

Transverse square radius

As $x \rightarrow 1$, the active parton carries all the momentum and represents the centre of momentum

Dupré et al., PRD95(2017)011501

Radial pressure distribution

Necessary to verify model assumptions in the exp extraction with more data coming from JLab, COMPASS and EIC

Kumericki, Nature 570 (2019) 7759

Orbital angular momentum from GPDs

JLab Hall A, Phys. Rev. Lett. 99 (2007) 242501

Hermes Coll., JHEP 06 (2008) 066

Problem of model dependent extractions

QCD in nuclei

nuclear PDF

Simulations of DIS $F_{2,L}(x,Q^2)$ at EIC kinematics

 $R = \frac{PDF (Pb)}{PDF (p)}$

nuclear modification factor for partons

nuclear PDF

Simulations of DIS $F_{2,L}(x,Q^2)$ at EIC kinematics

 $R = \frac{PDF (Pb)}{PDF (p)}$

nuclear modification factor for partons

nuclear PDF

Simulations of DIS $F_{2,L}(x,Q^2)$ at EIC kinematics

 $R = \frac{PDF (Pb)}{PDF (p)}$

nuclear modification factor for partons

- complementary to LHC data:

- test universality of nPDF
- reduce QCD uncertainties in BSM searches
- energy loss (jet quenching) in eA vs. AA: QGP vs. gluon saturation

Saturation at high nuclear density

Backing ing General Qelity since Biplians Where is onset of high-density regime?

Saturation at high nuclear density

Backing ing local El Qebysics Bipliars Where is onset of high-density regime?

saturation scale $Q_s(x,A) \gg \Lambda_{QCD}$

Color Glass Condensate (CGC)

Iancu, Leonidov, McLerran, P.L. **B510** (01) 133

Saturation at high nuclear density

Backing ing General Query sind Biplians Where is onset of high-density regime?

saturation scale $Q_s(x,A) \gg \Lambda_{QCD}$

Color Glass Condensate (CGC)

Iancu, Leonidov, McLerran, P.L. **B510** (01) 133

Advantage of having ion beams: same Q_s reached for higher x / lower √s

Saturation scale $[Q_s(x,A)]^2 \sim \left(\frac{A}{x}\right)^{\frac{1}{3}}$

EIC can "intercept" Q_s(x,A)

Importance of diffraction

Hadron spectroscopy @ EIC

New multiquark states to confirm: X(3872) and ΣD pentaquark

Hadron spectroscopy @ EIC

Diffractive double J/ψ production through $\gamma\gamma$ collisions

Hadron spectroscopy @ EIC

Diffractive double J/ψ production through $\gamma\gamma$ collisions

Open heavy flavour

Conclusions

- EIC is addressing fundamental (open) questions on structure of nucleons and nuclei:
 - spin and flavor structure of nucleons and nuclei
 - 3D-imaging (tomography) in momentum and spatial space
 - description of matter at extreme parton densities
- The answers to these questions are relevant both "per se" and for precision
 measurements / New Physics discoveries
- Apologies for not having discusses many topics in detail: many interesting slides on each of these topics (and more!) at
- Thanks for your attention!

