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Introduction

What we want:

What we got:

What it's good for:

A systematic way of dealing with non-perturbative phenomena in
quantum field theory.

The quantum effective action (in various forms).

[R. Jackiw '74; J. M. Cornwall, R. Jackiw & E. Tomboulis '74; H. Ver-
schelde & M. Coppens '92; M. E. Carrington '04; A. Pilaftsis & D. Teresi
'13; J. Ellis, N. E. Mavromatos & D. P. Skliros '16]

Non-equilibrium phenomena

[J. S. Schwinger '61; G. Baym & L. P. Kadanoff '61; L. V. Keldysh '64;
R. D. Jordan '86; E. Calzetta & B. L. Hu '88; J. P. Blaizot & E. lancu
'02; J. Berges '04; PM & A. Pilaftsis ’13]

Symmetry breaking

[S. R. Coleman & E. J. Weinberg '73; J. Alexandre '12; J. Alexandre &
A. Tsapalis '12]

Instantons/Solitons/Vacuum decay

[B. Garbrecht & PM '15; A. D. Plascencia & C. Tamarit '16]
Functional renormalisation group

[C. Wetterich '91 & '93; T. R. Morris '94; U. Ellwanger '94; M. Reuter
'08; J. Berges, N. Tetradis & C. Wetterich '02; J. Pawlowski '07; H. Gies
'12; O. J. Rosten '12]



The 2PI effective action

For illustration, let's work with a zero-dimensional Euclidean quantum field theory:
[PM & P. M. Saffin '19]
A
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and write down the partition function
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in the presence of external sources J and K.

The Schwinger function
W(J,K)=—-hInZ(J,K)

is concave.

Its gradients with respect to —J and —K/2 are (®) ,  and (®2) ., respectively, i.e.
the one- and two-point functions.



The 2Pl effective action

W(J,K) = —hInZ(J,K) for m* = —1 and A =6, i.e.

0

non-convex classical potential:
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[PM & P. M. Saffin '19]
Introduce a function

F3(6,8) = WU, K) + J6 + S KIg? + ha]

The variables ¢ and A determine the value of the maximum of this function and its
position in the (J, K) plane ...



The 2PI effective action

r,.x(0,0) r.x(1,0) r.x(2,0)
[PM & P. M. Saffin '19]



The 2Pl effective action

The (double) Legendre transform

M(¢,A) = maxy kI k(p,A)

corresponds to the value of these maxima as a function of ¢ and A.

The locations of the maxima correspond to extremal sources J and K, defined by

ary k(¢, A) —0 ar k(¢ D) —o
0J J=T K=K oK J=T K=K
The extremisation yields
1
M(¢,8) = W(J,K) + T+ SKIg* + hAA]
with
6= 12 nz(,K) ha = 22 in 2(J, K) — ¢?
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The 2PI effective action

Importantly, since the location of the maxima of I'j (¢, A) depend on ¢ and A

J=J(¢, D) K=K(¢,4)
10
20 -
0
0
-10
-20
1 2
05 o 2 0.5 , 0 2
A 0 -2 " A 0 -2 é
[PM & P. M. Saffin '19]
In corollary,
¢ =9(J,K) A=A(T,K)

and they are related to the tangents to the Schwinger function.



The 2PI effective action

The extremal sources [J and K are related to the tangents to (¢, A):

(0.8 _ or(6.8) _
Tas =G K08 TS = KA

The right-hand sides are source terms, and the gradients of (¢, A) are the equations
of motion for the one- and two-point functions ¢ and A.

Since these are correct to all orders in h, we are justified in calling (¢, A) a quantum
effective action.

Why “2P1"?



The 2PI effective action: convexity

By definition of the Legendre transform, I'(¢, A) should be convex.

But for the non-convex classical potential with m? = —2 and A = 6, we find
31 J \\
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[PM & P. M. Saffin "19]

This doesn't look convex; what gives?



The 2PI effective action: convexity

Convenient to work with the variables ¢/ = ¢ and A’ = ¢? + LKA and the rescaled
sources J' = J and K' = K/2:
[PM & P. M. Saffin "19]

M, D) = W(T,K)+T'¢ + KA

ore,48) _ ,  ($B)
a4 RN
¢,:78W8(JJC) A - _OWT,K)
j’ oK’

We consider the product
[cf. the 1Pl case in J. Alexandre & A. Tsapalis '12]

—Hess(MN)(¢’, A”) - Hess(W)(J',K') =1

—Hess(W)(J’,K’) is a covariance matrix, i.e. positive definite. Thus, Hess(I)(¢’, A’)

is positive definite, and (¢, A) is therefore convex, but with respect to ¢ and A’.



The 2PI effective action: convexity

Plotting (¢, A) as a function of ¢ and A’ = ¢ + LA, we see that it is convex:
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[PM & P. M. Saffin '19]

Note that this is for a non-convex classical potential, with m?> = —2 and A\ = 6.



The 2PI effective action: single saddle point

Stationarity/saddle-point condition:

aS(®)
90 |o_,,

- J(¢,8) = K(¢,A)p =0

Define the two-point function

- >S(®
6= (670 K@) 6= T2

—m? 4 22
=

and expand ® = ¢ + VId to obtain
r(d)’ A) = 5(50) + hrl(@» g) + h2r2(90a g) + h2rlPR(§07 g)

+J(¢—<p)+%l€(¢2—<p2+hA—hg)

1 1
Mi(e.6) = 5 [In (6716(0)) +Kk0] = 7 [In (6716(0)) +6'¢ — 1]
1 1 1
M2, G) = §>‘g2 - EA2%02Q3 Fpr(p, G) = —§A2g0293

But ¢ = ¢(¢, A), and we can expand the right-hand side around ¢ — ¢ = O(h):

F(¢,8) = S(¢) + A1 (, A) + h°T2(¢, A)



The 2PI effective action: multiple saddle points and the Maxwell construction

More generally, we have a set of saddle points {p;} = {¢i}(¢, A), where both the
type and number depend on (¢, A).

For m?> = —1 and A = 6, we have 1 to 3 saddles, depending on (¢, A):
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[PM & P. M. Saffin "19]

Don't mix up your ¢'s and ¢'s!

If the saddle points are “reasonably well separated”

Z(J,K)~ > Zi(T,K)



The 2Pl effective action: multiple saddle points and the Maxwell construction

Suppose there are two contributing saddle points, ¢+ (¢, A) = @+ + hdp+ (¢, A):
[PM & P. M. Saffin '19]

B+ =) - + (0 — @)

1. ~
M(¢,A) = — = S K(B+ — o) —¢-)
P+ — P 2
. ~<ﬁ+*~¢ . ~¢*¥5~_ B
— hln ("f_“’*)“”_“” +(L_~¢)“’““” +2Kn
Py —¢ ¢ — P 2
In the limit I — 0, we recover the 1Pl result:
[J. Alexandre & A. Tsapalis '12]
. |: - |: - _¢+*_¢> - :b—v':
M(6) = (¢+ —¢): +(~¢—807) * hin (¢z—<ﬁ7>*’+*¢— n (<P+ —~¢> Fr-
P+ — G- P+ — ¢ ¢ — G-

giving the Maxwell construction in the limit 2~ — 0:

(B — V- + (¢ —p-)Vs

r(¢)= —
B+ — P

For how this works in higher dimensions, see [R. J. Rivers '84; PM & P. M. Saffin '19].



The 2PI effective action: multiple saddle points and the Maxwell construction

> [(¢) is monotonic only for g_ < ¢ < @4.

> We hit branch points at ¢ = $+ when we no longer have multiple saddles.
> For ¢ > B4 or ¢ < G, [(¢) = V(9).
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[PM & P. M. Saffin '19]

The values on the right-hand side are 7 = J[¢], with K = 0.



The 2PI effective action: method of external sources [B. Garbrecht & PM '16]

Folklore: The physical limit corresponds to vanishing external sources.

Reality: Setting J(¢,A) and (¢, A) to zero constrains ¢ = ¢(7,K) and
A = A(J,K), yielding the CJT effective action with an important difference:
[J. M. Cornwall, R. Jackiw & E. Tomboulis '74]

We can choose the sources J (¢, A) and K(¢, A), such that the saddle point of the
partition function coincides with the quantum trajectory by demanding

=0

9510] —j(¢,A)—K(¢,A)¢:M¢ "
oa

50 ooy 5

This requires

j((pv g) + IC(QO, g)‘ﬂ =0

and it can be proven that this is the case.
[B. Garbrecht & PM '16; PM & P. M. Saffin '19]

This is important when the quantum trajectory is non-perturbatively far away from the
classical trajectory, e.g., as in tunnelling problems in radiatively generated potentials.
[E. J. Weinberg '93; B. Garbrecht & PM '15 & '16]



The 2Pl effective action: method of external sources

But we can do more:
[B. Garbrecht & PM '16]

> Setting J to zero and choosing K to be local yields the 2PPI effective action of
Verschelde and Coppens.
[H. Verschelde & M. Coppens '92]

» Constraining the sources by, e.g., the Ward identities, yields results in the spirit of
the symmetry-improved effective action of Pilaftsis and Teresi.
[A. Pilaftsis & D. Teresi '13]

> Choosing K to be the regulator of the renormalisation group evolution yields ...
[E. Alexander, PM, J. Nursey & P. M. Saffin "19]



Interlude: the 1Pl average effective action

The average 1P| effective action is defined as
[C. Wetterich '91]
SWIT, R

1
M6 Rl = WIT Rid + Tt xRy by bx = o

where R ,, is the inverse FT of the regulator (kills fluctuations with g% > k?).

Requiring SWLTRA]
s Ik

|
=0
NV

Okpx = — 0Ok
implies J[¢] = Jk[#] and
1
W [Tk, Ri] = —dxOk Ti,x — 5 (MDA sy + dxdy) Ok R xy

S W[Tk, Ri]

A =
oy 6\7k,x6n7k,y

The Wetterich-Morris-Ellwanger equation:
[C. Wetterich '93; T. R. Morris '94; U. Ellwanger '94]

h
KT [6, Ryl = =5 Tr(B = Ri)



The regulator-sourced 2P| effective action and exact flow equations

Instead, starting from the 2Pl effective action,
[E. Alexander, PM, J. Nursey & P. M. Saffin '19]

6r2PI[¢ A] 5r2PI[¢ A]
air*'[p, A] = "= O+ "2 OB
k Sx , 5A, TV
Okpx = 78k75w[j, M 0

5Tx
h
HrP'e, Al = 5 Ko [0, Al0kDy

Now choose Kxy [, A] = Ry x, to be the inverse FT of the regulator:

8¢, Al = = Tr (R * 0 A)

OuT?P[g, Bl = +5STr (Rudisy)

h
W6, Ri] = —ESTF (AkORy)




The regulator-sourced 2P| effective action and exact flow equations

Boundary conditions:

> As k — 0, Ry — 0, and both the regulator-sourced 2P| and average 1Pl effective
actions, coincide with the 1Pl effective action rlP'[¢>] = W[J] + Txpx-

> As k — o0, all fluctuations are killed, and both the regulator-sourced 2Pl and
average 1Pl effective actions, coincide with the bare action S.

Closure: It follows from the convexity of the 2Pl effective action that

PP, O] BPWIT Kil 8229, Al B2W[Ti, K] 1

Spxbpy 3Tk, x0Ty 5¢x5A27y2 6Jk’X61CL’yz
62r2P| A 62r2P| A kY x
[#, Ak Dy + [¢; k] cf) _1
Spxdpy 6¢X6Ak7yz J}Ck,yz
But 6¢X6/IC;(’YZ = 0 and therefore
62r2PI ,A 525
-1 _ [(b k] _ [(b] _ Rk,xy + O(h)

ko T Sgedpy iy

So we have two closed systems with the same boundary conditions but different
evolution equations, and therefore different RG flows!



The regulator-sourced 2P| effective action and exact flow equations

Employing the derivative expansion, we make the Ansatz (p = ¢?/2)
1
P, Al = [ @t [Uulo) + 3 2. (000,00, -+ (")

Ui(p) = %gk (p— P)* + M
and introduce dimensionless variables
ki = Zkk® 9y Ak = Z[de_4gk
with Z, = Zi(pk, k?), giving
Us(p) = %kdxk(zkk%dp — k) + Ak

The Ansatz for the two-point function is

1

Ay(p,q?) =
K0 a) = o ) = Ru(a®) + UL(p) + 2007 (7)

and we take the Litim regulator
[D. F. Litim '02] .
Rk(q2) — Zk (q2 _ k2) ) (k2 _ q2)



The regulator-sourced 2PI effective action and exact flow equations

Regulator-sourced 2PI:
[E. Alexander, PM, J. Nursey & P. M. Saffin '19]

8vgkd 1
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Otk = (2 — d),‘ik +

Ot Ak = (d — 4)Ak +

Wetterich-Morris-Ellwanger:
[C. Wetterich '93; T. R. Morris '94; U. Ellwanger '94]

1 4vykd 1
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The regulator-sourced 2P| effective action and exact flow equations
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[E. Alexander, PM, J. Nursey & P. M. Saffin '19]
> Solid: regulator-sourced 2PI. Dashed: Wetterich-Morris-Ellwanger.
> The flow of ky is faster (in d = 4); the flow of A\ is slower (in d = 4).

> This is in a perturbative regime ...



Concluding remarks

> [t pays to be pedantic when it comes to the quantum effective action.

> We can exploit the sources to:

> Improve our perturbation theory.
> Improve symmetry properties.
> Map between different realisations of the effective action.

> Study the exact RG flow.

» We do not recover the Wetterich-Morris-Ellwanger equation; which is correct?

> Significant differences in non-perturbative regimes?

> Implications for the asymptotic safety programme?

» Lotstodo...



The Legendre transform

[M. Deserno "12 (unpublished); PM '16 (unpublished)]

> A function f that is strictly convex or concave on an interval / € R has a
second-derivative of definite sign.

> lts first derivative f’(x) is monotonic, single-valued and invertible on /.

> We can express f as the set of ordered pairs {(x, f(x))|x € I, f(x) € R} or the
envelope of the tangents to f.

> The Legendre transform maps {(x, f(x))} to {(x*, f*(x*) = —*f(x*))},
specifying the gradients and intercepts of the tangents. (x = convex conjugate.)



The Legendre transform

[M. Deserno 12 (unpublished); PM '16 (unpublished)]
> Define w(x) = x*x.

> If f(x) is convex (concave), w(x) — f(x) will have a maximum (minimum):

*(x*) = minxe/{f(x) = x"x} , f(x) convex
X =
maxxe{f(x) — x*x} , f(x) concave
f(x*) = maxxe{x*x — f(x)}, f(x) convex
T | mine{x*x = f(x)}, f(x) concave



Backup: middle saddle

[PM & P. M. Saffin '19]



Backup: saddles with  # 0

V(D)

o431+ O
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[PM & P. M. Saffin '19]

The values on the right-hand side are 7 + K&, with || = 1.



Backup: d =2
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[E. Alexander, PM, J. Nursey & P. M. Saffin '19]



Backup: d =3

|
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[E. Alexander, PM, J. Nursey & P. M. Saffin '19]



