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The Hubble tension

» Local measurements of H, provide larger values than what is
inferred from cosmological observables.

» Local measurements are dependent on the distance ladder.
Parallax + Cepheid Variable + SNe 1a

» Calibration done in several independent manners.
» Cosmological measurement from CMB and BAO data.

» These can be considered independent and provide similar values




The Hubble tension

» Latest local measurement from Riess et al. Astrophys. J. 876, 85
(2019). SNe 1a at redshifts z~0.5

» Measurement of Cepheids in Large Magellanic Cloud (LMC).
» Cepheids have a known relationship of period vs luminosity.

» Calibration of the relationship is done by independently
measuring the distance to the Cepheids. Several independent
methods exist (Masers, DEBs, Parallax)

» SNE 1a are a standard candle. Cepheids are used to calibrate the
SNe 1a




The Hubble tension

» Cosmological measurement from Baryon Acoustic
Oscillations(BAO) and PLANCK CMB Data.

» Can be considered independent variables.
» Lower values of H, are inferred
» This suggests systematics in the data are not the cause.

» But inferences are dependent on ACDM.




The Hubble tension

» Riess et al. Astrophys. J. 876, 85 (2019), local measurement

Hy = (74.03 + 1.42)km/s/Mpc

» Planck Collaboration 2018

Hy = (67.4

- 0.5)km/s/Mpc
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determines locations of peak. Damping scale at large L. Planck2018

» Depend on H, or fluid content, before decoupling.

» Angular distance to LSS. Depends on H today.
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CMB Power Spectrum

» Peak positions of CMB TT spectrum well measured. Ratio of
sound horizon to angular distance.

» Increasing H, leads to smaller angular distance -> larger
subtended angles of peaks.

» If sound horizon decreased by the same amount, by some new
physics, measured position of peaks would be the same.
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Probing the dark sector?

» Idea. Could an extra non-interacting ultra-relativistic compon
in the early universe solve the tension?

» Increasing H before decoupling decreases sound horizon.

pur = (Neyp +ANepr)py rs(tLss) = [ es——

ent

da
H

> Ni=3.046 in the SM. Planck measurement: N, ¢ = 3.0 =
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Probing the dark sector?
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Doesn’t work, even when adjusting other parameters.
Too much damping at large scales.

Computed with CLASS Boltzmann code
D. Blas, J. Lesgourgues, T. Tram, JCAP 1107 (2011) 034
http://class-code.net/
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Probing the dark sector?

» Fixing the horizon scale affects the damping scale. Different
dependencies on primordial H.

» Also problems in BAO spectra.

» Cosmic scalar field, or early dark energy (EDE) may work. Poulin,
Smith, Karwal, Kamionkowski, Phys. Rev. Lett. 122

» Diffusion scale depends on H before matter-radiation equality, as
modes enter the horizon sooner.

» Sound horizon on H until decoupling.

» Add a component which decays at ™~ matter-radiation equality
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Cosmic scalar field

» Evolution frozen at early times. Dark energy component w=-1.
Then coherent oscillations.

» At late times dilutes as matter, radiation, or faster, according to
form of potential.
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PNGB Cosmic scalar field
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» PNGB potential. n=1 cannot solve Hubble tension
» “Thawing” depends on parameters.
» Anomalous expansion only in radiation dominated era, less

so in matter dominated one.




Scalar field perturbations

* Must be studied consistently with other primordial perturbations

(photons, neutrinos, baryons and dark matter).
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Cosmic Birefringence

» EDE fits data within error and alleviates Hubble tension. Can we
discern EDE?

» Cosmic birefringence. Rotation of CMB polarization on the sky

with scalar field. ’ _ GXWW)(F Vﬁ’””
» Causes rotation of E modes into B modes. X 4 H

» Can be cast into rotation power spectrum, and cross correlation
with temperature
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» Rotation angle given by difference of field at emission and
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Cosmic Birefringence

» Uniform rotation angle accounts for probability distribution of
photon emission at decoupling. The visibility function.
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» Perturbations to the scalar field cause a non-uniform rotation

across the sky: rotation power spectrum.

» Also perturbations to the time of emission. Perturbed visibility
function through perturbed electron density.

» Usually electron perturbation not tracked by Boltzmann codes.
Assume 0ne =~ Opne ; tight coupling!




Cosmic Birefringence

» Perturb the integral and find the rotation transfer function today
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» The source is also due to matter and metric perturbations.
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» Rotation spectrum and cross correlation
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Rotation spectra
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Acoustic oscillations contribute




Rotation spectra
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» Acoustic oscillations contribute

» With this coupling, slightly below experimental limits ~1deg




CT
(@]
()
=,
K
AN
~
S
S
O
—
—
+
-
=
—

Rotation spectra
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» Measurable by programmed experiments:
CMB S-3, CMB S-4
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LiteBIRD, Simons Obs.
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Rotation spectra
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» Spectrum depends on potential.
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Rotation-Temperature cross-correlation
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» Relative contributions of matter and field perturbations alter
form drastically. Strong dependence on potential.

» Note: overall sign is not fixed.



Conclusions

» Hubble tension needs explanation. PNGB Early dark energy?

» Rotation power spectrum and temperature cross-correlation
important experimental signal to confirm hypothesis.

» Dependence on potential in the power spectrum.
» Rotation spectra is not featureless. Acoustic oscillations appear.
» Capparelli, Caldwell, Melchiorri, Submitted to PRL, [1909.04621]

Thank you!




