

Status of the XENON Dark Matter Search Experiment

Fei Gao Columbia University

On behalf of the XENON Collaboration

LNGS Seminar Oct 10, 2019

The Universe is Dark!

What is Dark Matter?

- Neutral: no EM interaction
- Stable: Lifetime larger than age of the Universe
- Massive: for structure formation
- Interaction besides Gravity ??

BOSONS-

FERMIONS

Search for WIMPs

Standard Assumptions for WIMPs Direct Detection

- DM mass range: GeV~TeV
- local WIMP density: 0.3 GeV/ cm³
- Isothermal velocity distribution: v₀~220 km/s
- WIMP escape velocity ~544 km/s

WIMPs

density

 $2m_{\gamma}m_{r}$

WIMP

mass

number of

targets

dR

dE

interaction

cross section

 $\sigma_{_N}$

Direct Detection Techniques

Heavy vs light WIMPs

Two-phase Xe Time Projection Chamber as WIMP detector

- Scintillation light S1
- Ionization electron -S2

- two signals for each event:
 - Energy from S1 and S2 area
 - 3D event imaging: x-y (S2) and z (drift time)
 - self-shielding, surface event rejection, single vs multiple scatter events
- Recoil type discrimination from ratio of charge (S2) to light (S1)

XENON100

The XENON Collaboration: ~170 scientists

Development of XENON Program

XENON10	XENON100	XENON1T	XENONnT
		<image/>	<image/>
2005-2007	2008-2016	2012-2018	2019-2023
25 kg - 15cm drift	161 kg - 30 cm drift	3.2 ton - 1 m drift	8 ton - 1.5 m drift
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²

Background Tolerance

Shield: From XENON10 to XENON1T/nT

XENON10

XENON100

XENON1T/nT

- XENON10, XENON100: conventional passive shield, onion-like structure
- XENON1T, XENONnT: large water Cherenkov active shield, necessary to remove muon induced backgrounds

Gran Sasso — The XENON Shield

XENON1T: All Systems

Evolution of LXeTPCs as WIMP detectors

Fiducial mass [kg] PandaX LUX XENON100 XENON10 306 1300 5 34 118 2018 2008 2016 2017 2012 0.2 2.6 8.0 5.3 1000 Low-energy ER background [events / (tonne keV day)]

1 ton-year of WIMPs Search

- 1.3t fiducial mass, resulting in 1 t-yr exposure for WIMPs search
- Blinding: to avoid potential bias in event selection and the signal/ background modeling
- Position dependent likelihood for the statistical inference

Energy Reconstruction

$$E = (n_{ph} + n_e) \cdot W = (\frac{S1}{g1} + \frac{S2}{g2}) \cdot W$$

- exploit anti-correlation of charge and light for a more precise energy scale: excellent linearity with electronic recoil energy from ~ keV to ~ MeV
- g1 = 0.143 ± 0.007 (sys) PE/ photon corresponds to a photon detection efficiency of 12.5 ± 0.6% (taking into account double PE emission). MC projected efficiency is12.1%.
- g2: the amplification of charge signal corresponds to near full extraction of charges from the liquid.

Position Reconstruction

x-y reconstruction via **neural network**:

- **Input:** charge/channel top array
- Training: Monte Carlo simulation
- TensorFlow framework implemented
- Pattern likelihood fit for cross-check

Position resolution

- Position resolution (1-2 cm)
- PMT diameter (7.62 cm)

PRD 100, 052014 (2019)

ER Background

NR Background

- Cosmogenic µ-induced Source neutrons, significantly reduced by muon veto detector **Radiogenic** n **CEvNS** 0.012 Cosmogenic Coherent elastic v-nucleus < 0.01 scattering irreducible background (sun, atmosphere) JCAP04 (2016) 027 **XENON Preliminary** 0010 30 20 Radiogenic neutrons from (a, ulletDepth (cm) n) reactions and fission from -20 ²³⁸U and ²³²Th chains and spontaneous fission -40-60reduced via careful material selection
 - non-homogeneous event distribution

PRD 99, 112009 (2019)

Calibrating ERs and NRs

Surface Background

Accidental Coincidence Background

Background Prediction

All models derived in 3D space: (S1, S2, R, Z) including rate predictions while DM search data is blinded

Source	1.3 t	1.3 t, NR Ref.	0.9 t, NR Ref.
ER	627 ± 18	1.6 ± 0.3	1.1 ± 0.2
Radiogenic	1.4 ± 0.7	0.8 ± 0.4	0.4 ± 0.2
CEvNS	0.05 ± 0.01	0.03 ± 0.01	0.02
Accidental	0.5 + 0.3 - 0.0	0.10 + 0.06 - 0.00	0.06 + 0.03 - 0.00
Surface	106 ± 8	4.8 ± 0.4	0.02
Total	735 ± 20	7.4 ± 0.6	1.6 ± 0.3
200 GeV WIMP	3.6	1.7	1.2

Unblinding and Results

Pie charts indicate fractions of the PDF from the best-fit of assuming 200 GeV/c² WIMPs with a cross-section of 4.7 x 10⁻⁴⁷ cm²

Source	1.3 t	1.3 t, NR Ref.	0.9 t, NR Ref.
ER	627 ± 18	1.6 ± 0.3	1.1 ± 0.2
Radiogenic	1.4 ± 0.7	0.8 ± 0.4	0.4 ± 0.2
CEvNS	0.05 ± 0.01	0.03 ± 0.01	0.02
Accidental	0.5 + 0.3 - 0.0	0.10 + 0.06 - 0.00	0.06 + 0.03 - 0.00
Surface	106 ± 8	4.8 ± 0.4	0.02
Total	735 ± 20	7.4 ± 0.6	1.6 ± 0.3
200 GeV WIMP	3.6	1.7	1.2
Data	739	14	2

Spatial Distribution of Dark Matter Search Data

- Results interpreted with unbinned profile likelihood analysis in cS1, cS2, r space
- Core volume to distinguish WIMPs over neutron background

Constraints on WIMP interactions

Phys. Rev. Lett. 122, 141301 (2019)

Phys. Rev. Lett. 121, 111302 (2018)

The Next Step - XENONnT

- 6t of LXe as sensitive WIMPs target, fiducial mass of > 4t
- ²²²Rn background reduction of 10
- Neutron tagging with active neutron veto system
- Cryogenic liquid purification to reach > ms electron lifetime "promptly"
- Start commissioning in 2019, science data in 2020

Radon Reduction in XENON1T/nT

XENONnT Neutron Veto

- Gd-Water Cherenkov veto detection is going to be deployed as neutron veto
- >85% tagging efficiency is expected.
- Reduce neutron background to be < 1 events / (20 tonne year)

Other physics opportunities in XENON1T/nT

•

light (< 6GeV) Dark Matter Searches

• S2-only analysis

٠

Annual modulation

• Electronic recoils (Migdal effect)

Double beta decay searches

٠

• 2-neutrino double electron capture of Xe124

.

• 0-neutrino double beta decay of Xe136

Search for Axion, Dark Photons

- Mono-Energetic lines from Axions, DP
- Solar Axion, solar DP...

Lower the energy threshold: S2-only

Lower the energy threshold: S2-only

Even lighter? – Migdal / Bremsstrahlung Effect

The current WIMPs landscape

XENON1T, arXiv:1907.11485, arXiv:1907.12771

Challenge for a simultaneous 0vbb search

- Poor energy resolution at MeV region
 - Not an issue as demonstrated in XENON1T !!
- Large background due to material radioactivity (PMTs, Cryostat)
 - improved in future large detectors (XENONnT/LZ, DARWIN)

XENON1T: spectrum and resolution

Outlook: Search for 0vbb in future LXeTPCs

Summary and outlook

- XENON1T had finished dark matter search with 1 ton-year exposure, and produced world-leading sensitivity in large mass range
- XENONnT is being constructed and commissioning at LNGS, first science data to come in 2020.
- XENON1T detector demonstrated the power of LXeTPC for many different rare event searches. More exciting news to come from XENONnT

More info

Corrections to the "saturated" S2s

Study shows FADC saturation is happening before PMT "base" nonlinearity

Spatial and time distribution of S2 signal motivate this "desaturation" algorithm