

High-resolution γ -ray spectroscopy at the Legnaro National Laboratories

Daniele Mengoni Università di Padova e INFN

for the GALILEO collaboration

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Pandora meeting – Oct. 2019

INFA

Outlook

Introduction γ-ray spectroscopy at LNL AGATA tracking spectromter The GALILEO project PANDORA synergy

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Nuclear physics at the frontier

How did visible matter come into being and how does it evolve?
How do NNN forces impact structure and reaction properties of nuclei ?
How does subatomic matter organize itself and what phenomena emerge?

What is the origin of simple patterns in complex nuclei?

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

The quantum ladder

Astronomical observations

Astrophysical simulations

Stellar nucleosynthesis

Stellar explosions

Nuclear structure and reactions observables

- Experiments
- Theoretical calculations

γ-ray spectroscopy at LNL

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Legnaro National Laboratoy – INFN Where

Pandora meeting – Oct. 2019

γ-ray Spectroscopy@LNL-INFN

Daniele Mengoni

Long-standing activity

EUROBALL 1998

80% nuclear physics research
 50% γ-ray spectroscopy
 Proton- and neutron-rich nuclei

AGATA 2008

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

The AGATA project

- segmented detector
- pulse-shape analysis
- tracking the γ rays
- digital electronics

- Amount of germanium: 362 kg
- Solid angle coverage: 82 %
- Singles rate >50 kHz
- Efficiency: 43% (M_y=1), 28% (M_y=30)
- Peak/Total: 58% (M_y=1), 49% (M_y=30)
- Angular Resolution: ~1°

Calorimetric -> Position Sensitive

- 50% of solid angle taken by the AC shields
- large opening angle poor energy resolution at high recoil velocity
- too many detectors needed to avoid summing effects
- opening angle still too big for very high recoil velocity

Smarter use of Ge detectors

- segmented detectors
- digital electronics
- timestamping of events
- analysis of pulse shapes
- tracking of γ-rays

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

γ -ray tracking concept

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

1 mm position resolution \rightarrow 1 deg

Induced current Ramo Theorem

D4

time (ns)

E5

E3

 \mathbf{E}

D

time (ns)

$$f_k = -qv \cdot \nabla \phi_k(r_q)$$

E. Gatti, et al. NIM 193 (82) 651

F4

200 400 0 200 400 0 200 400 0 200 400

Ring 1

time (ns)

 $\mathbf{E4}$ E3

200 400

time (ns

Credits M.Ginsz, et al., **IPHC Strasbourg**

-0.2

time (ns)

Daniele Mengoni

0.8

06

04

03

0

0.6

0.4

200 400

200 400

time (ns)

0

200 400

time (ns)

Core

time (ns)

0 200 400

E4

.0 2

0

200 400

time (ns)

0

200 400

time (ns)

0

200 400

time (ns)

 γ -ray Spectroscopy@LNL-INFN

791 keV deposited in segment B4

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Daniele Mengoni

Forward tracking implemented in AGATA

- 1. Create cluster pool => for each cluster, $E_{y0} = \Sigma$ cluster depositions
- 2. Test the 3 mechanisms
 - 1. do the interaction points satisfy the **Compton** scattering rules ?

$$\chi^2 \approx \sum_{n=1}^{N-1} W_n \cdot \left(\frac{E_{\gamma'} - E_{\gamma'}^{Pos}}{E_{\gamma}}\right)_n^2$$

- 2. does the interaction satisfy photoelectric conditions (e₁,depth,distance to other points) ?
- 3. do the interaction points correspond to a **pair production** event ?

 $E_{1st} = E_{\gamma} - 2 m_e c^2$ and the other points can be group in two subsets with energy ~ 511 k

3. Select clusters based on $\chi^{_2}$

Lifetime measurement of 6.79 Mev in ¹⁵O

¹⁴N(²H,n)¹⁵O and ¹⁴N(²H,p)¹⁵N reactions @ 32 MeV (XTU LNL Tandem) **Direct lifetime measurement** with 4 ATCs at backward angles (close to the beam-line)

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

Compton polarimeters

Partially-polarized 555.8-keV and 433.9-keV lines in 104Pd and 108Pd [+unpolarized 137Cs source].

$$\bar{\sigma}_C(\theta,\varphi) = \frac{r_0^2}{4} \left(\frac{E_{\gamma}'}{E_{\gamma}}\right)^2 \left[\frac{E_{\gamma}}{E_{\gamma}'} + \frac{E_{\gamma}'}{E_{\gamma}} - \sin^2\theta \left(1 + P\cos 2\varphi\right)\right]$$

Analyzing power: 6x10-3

Pandora meeting – Oct. 2019

γ-ray Spectroscopy@LNL-INFN

Daniele Mengoni

Resident array at LNL

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

HPGe

- 25 HPGe detectors GASP type
 @ 22.5cm; ~ 2.4% eff @1332.5
 25 BGO
- FWHM@1332.5 keV < 2.4 keV; with experimental shaping: 17 mounted
 Completely digital DAQ:
 - 4 µs rise time, 1µs flat top energy stored
 - ✓ initial part of the signal taken
 - BGO slave of HPGe
 - very low noise
 - recover time information from the signal

Compton shield

- For large-volume Ge crystals the Anticompton shield (AC) improves the Peak_to_Total ratio (P/T) from ~20% to ~60%
- In a g-g measurement, the fraction of useful peak-peak coincidence events grows from 4 % to 36%
- For high fold (F) coincidences the fraction of useful coincidences is: P/T F

GALILEO – Digital electronics

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

GALILEO – v deficient science campaign

Daniele Mengoni

GALILEO – Phase 2

Physics program driven configuration: 10 GTC @ backward angles Efficiency ~ 7.5%

GEANT4 Simulation by Alain Goasduff

Mechanical project by INFN Padova

γ-ray Spectroscopy@LNL-INFN

GALILEO triple cryostat

New triple cryostat out of the EUROBALL capsules.

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

GTC + AntiCompton shields

Standard configuration GTC crystals at ~ 5 cm from the BGO front face Close configuration GTC crystals aligned to the BGO front face

Daniele Mengoni

γ-ray Spectroscopy@LNL-INFN

 \checkmark Some considerations as γ -ray spectroscopist

Background (from TDR)

- Back ground: 5000xe^(-E/100keV)
- Integral: pps 500k _> ~50kHz det
- Hist populated with random numbers

Shield to be considered
 Likely at the edge of a counting det for spectroscopy purposes (at sustainable cost)

No significant difference in single

 $\gamma\gamma$ not investigated so far [PT^{Fold}] \rightarrow depending on the activity a coincidence might be useful to resolve the (lower-energy transition)

Simulations (quick&dirt)

- 1 week of beam(*live*) time \rightarrow statistical precision to be address ■ Signals: 1 cps vs 100 cps [τ : 10⁷ - 10⁵]
- Source at rest, lons velocity?
- HPGe: 20 cm distance (sphere) $\rightarrow \sim 2\% \epsilon_{ph}$
- 2.5x5 cm² Pb collimator
- AC included but $\gamma\gamma$ not investigated (...useful)

Summary and Conclusions

- Long-standing tradition in γ -ray spec. at LNL INFN
- Principle of tracking and AC γ -ray

spec.

Simple simulations with PANDORA
 Synergies to be considered
 harmonizing the use of resources
 Human resources and expertises to
 be considered

Daniele Mengoni

 γ -ray Spectroscopy@LNL-INFN

SPES facility

Fission fragments

UCx Target (... + not fissile also foreseen)

Expected intensity for reaccelerated beams

- MCNPX Calculation BERTINI - ORNL (FF cross-
- sections)
- Release & ionization efficiency in agreement and re-scaled on HRIBF experimental values and currents (200µA/5µA)

Neutron Wangate

50 (45) detectors, organic scintillators [BC501A]
Three types of signals for each of them: QVC, TOF, ZCO
Preselected neutron condition provided to the trigger
s(1n) = 23-27%; advantageous for identification of 2n channel
VME electronics → going to digital (NEDA)

	All vacu	um surfaces to be fr	ee from visible		GENERAL SURFACE FINE	н	GENERAL TO	LERANCE	C	HAMFER
C and C	defects such as pitting cracks and indentations. Remove all burrs and sharp edges			Ra(µm):	H1	LINEAR 2 / h12	ANGULAR +0.5 °		1x45°	
ĩ	DESIGN.	ESIGN.			MATERIAL TREATMENT					
h	DRAW.		02/05	2016						
덆	CHECK									
1	APPR.									
ALC: N	General cleanig procedure for vacuum components see procedure CINEL SPPR01									
of the later	STRUMENTI SCIENTIFICI									
APPENDING INC.	915UK215L			CRYOSTAT ASSEMBLY						
POWOOD IN COMPANY	CART-03	SCALE 1:2	WEIGHT [.2]	Kg	CODE	F3A	\F000	0	REV.	SHEET 1/I
10			11			12	Pro/ENG	SINEER A		

GTC performances

Prototype GTC

- 22 litres of LN₂ are needed to cool down the detector
- After ~ 4 hours the detector is ready to be connected to the automatic filling system
- No problems turning the detector upside-down: the temperature increases by ~ 3 °C
- Holding time > 32 hours

GTC status

Prototype GTC

- Delivered on August 29, 2016
- Positive acceptance test

Production of 10 GTC

- Placed the order in 2017
- Expected delivery of first 2 cryostats on February 2018

Mechanics and electronics

- Production of new cold and warm preamplifiers (AGATA core type)
- Mounting flanges and adapters TBD

FWHM	Data sheet	Measurements	Prototype
Position		at GSI	results
Pos A: HEX130	1.25 keV	???	1.14 keV
AGATA CC	2.21 keV	2.02 keV	1.95/2.04 keV
Pos B: HEX161	1.35 keV	???	1.11 keV
New CC	2.30 keV	2.04 keV	1.94/2.01 keV
Pos C: HEX 31	1.00 keV	???	1.35 keV
Orig.CC w Test	2.00 keV	2.06 keV	2.17/2.29 keV

AC status

AC prototype

- Project definition and cost estimate with an AC from GSI (SCIONIX)
- Irreversible BGO crystal changes authorized by Gammapool (option under investigation)

Produzione 10 AC per GTC

Funding request submitted in 2017. Estimated cost: ~ 130 k€ (IVA inclusa)

Standard configuration with GTC crystals at ~ 5 cm from the BGO front face

- Normal: original crystals used
- Short: crystals must be cutted (TBD)

Configuration compatible with GTC

Anti Compton shield

9 BGO crystals (6x type 1 + 3x type 2) from the EUROBALL AC shields Total weight ~ 35 kg

Top mounting flange

Project *evaluated/in preparation* by SCIONIX. Mounting system to be confirmed

Schematic drawing, not corresponding to final configuration

Probe of the nuclear effective interaction

Nuclear structure by detecting neutrons

NEDA

NISTERO DELL' ISTRUZIONE, DELL'UNIVERSITÀ E DELLA RICERCA

Science campaign with AGATA at GANIL

Basics of nucleo-synthesis processes

The s and r processes produce almost all heavy elements (A>60)

Processes are linked to stellar Evolution

Abundance patterns predicted by models, require nuclear physics input

Burbidge, Burbidge, Fowler, Hoyle, Rev. Mod. Phys. 29 (1957) 547 A.G.W. Cameron, 1982

FISSION PRODUCTS 86 Sr 87 Sr 88 'h 86 Rb 87 Rb 85 'r 80-Se 75 Se 76 Se 77 Se 78 9 79 Se 80 9 81 Se 82 r-process decay chains s-process flow

β decay faster then n capture
 Neutron density 10⁶⁻⁷n/cm³
 Branching points: τ and n capture rate of the same order of magnitude
 key reaction: (n,γ)

n capture faster than β decay
 Neutron density 10²⁰ n/cm³
 Dripline and waiting points: plenty of ...
 nuclear structure information needed
 π masses energy levels 1^π s n streng

 τ , masses, energy levels, J^π, s.p. strengths, (n, γ)

indirect methods for RIB (TH, SR, ANC)

one-nucleon and cluster transfer at the relevant astrophysics sites

SPES LOI:

Address uncertainties by the measurement of transfer reactions on neutron-rich nuclei *S.Pain, D.Mengoni et al*

SPES LOI:

Search for deformed oblate structures in 96 Y by γ -spectroscopy and **cluster transfer** reactions with a 95 Sr SPES beam

B. Fornal, S. Leoni ...

Complementariety

