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The origin of heavy elements in the Solar System
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Astrophysical sites of the s-process

main s-process (component)
BC-burning and He-flashes
in low mass TP-AGB stars
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Main s-process
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H- and He-burning in TP-AGB stars
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How do s-process neutron captures work?
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The main component: uncertainties

« experimental (n, y ) rates have been highly reduced in recent years reaching in
some cases a precision smaller than 1 or 2 % (see e.g. Kappeler et al. 2011)

 However, the high s-process temperatures allow the low-lying excited states to
be populated by the intense and energetic thermal photon bath

« ground state is accessible by experiment = the effect of neutron captures in
excited states has to be evaluated theoretically and suffers from large
uncertainties

» B-decay rates of some radioactive isotopes may be largely affected by variations
of temperature and electron density

» the contribution of thermally populated excited levels and the effects of unknown
transitions in a strongly ionized plasma can largely modify the B-decay rates at
stellar temperatures.

» Takahashi & Yokoi (1987) investigated the B-decay rates of unstable heavy
isotopes at temperatures and electron densities typical of stellar interiors (5 x 107
<T=<5x10%K; 10% < n_=< 3 x 10?” cm™?), finding large deviations from the
terrestrial values

* temperature dependence of branchings is even more complex, if branchigs have

isomeric states that are thermalized at high temperatures through transitions via
mediating states at higher excitation energy

> the abundances of the affected s-only isotopes carry direct information on the
physical conditions occurring during the s-process, i.e. neutron density,
temperature and density
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The main component: uncertainties of major branches

We distinguish the s-only isotopes in three classes, according to their dependence
on reaction branchings:

1)unbranched s-only isotopes, with unstable isobars having half-lives shorter than a
couple of days (thus forbidding neutron captures during TPs)

1OORu 104Pd 110Cd 1165n 124Te 1SOSm 160Dy 198Hg

2)s-only isotopes sensitive to neutron density only, with unstable isobars having
half-lives (almost) constant in stellar environments

96MO, 170Yb’ 142Nd’ 18605’ 192Pt

3)s-only isotopes (13413¢Ba, 152154Gd, 176Hf, 204Ph, 180Tgm, 128Xe) affected by branch
points with unstable isobars having 3-decay rates quickly changing under stellar
conditions:

* nuclides sensitive to both neutron density and stellar temperature (and/or
electron density): *“Cs, 1°1Sm, 1>4Eu, *7¢Lu, 2°4T|

* nuclides less affected by neutron density, but dominated by stellar
temperature and/or electron density gradients during TP: 77Hf, 128]|
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The branch at 134Cs |
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The dominant uncertainty affecting the **Ba/'**Ba ratio derives from the B-decay rate
of 134Cs

> the terrestrial half-life of 134Cs (t1/2= 2.07 yr) is strongly reduced under stellar
conditions (Takahashi & Yokoi 1987)
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The branch at 134Cs |

-t decreases by a factor

of 3atT =100 MK (0.67
yr) and by two orders of

magnitude at T = 300 MK iy
(3.8 d) Ty
« Note that A (1**Cs) does :
not change with electron 12}
(or mass) density " 5
« asmallamount of **Csis . |
converted to **Cs during  *_ "ot
the peak neutron density £ |
at the bottom of the TPs T 9}
> 134B3 is temporarily = |
reduced (by ~30%). The St
initial amount of ¥**Ba is _
almost fully re-established ’
as soon as the neutron 6L
density decreases. [
> almost the entire s-flow is 5

directed towards 1*“Ba,
may resulting in a
overestimate of solar 13*Ba
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The branch at 176Lu |

e The YLu/'¢Hf ratio is largely affected by
the branch at '¢Lu, which is strongly
sensitive to the temperature during TPs

176Hf 177Hf 178Hf
« ®Lu has a short-lived isomer (t™, , = 3.66 5.26 18.6 27.28
h) and an extremely long-lived ground 455 mb 1500 mb 314 mb
state (te, , = 38 Gyr)

1/2

176Lu

« internal transitions are highly forbidden 37.61x10°

by nuclear selection rules and any
coupling can only be provided by states
with intermediate quantum numbers and
higher excitation energies

176Yb

12.76
115.8 mb

e the low temperatures during the 3C-
pocket phase are not sufficient for that
coupling, the s-process flow via both
states has been treated independently
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The branch at 176Lu |l

o 178 ug is produced via thermal transitions
in the bottom layers of the advanced TPs, 1764 177 178t
where temperatures are T ~ 300 MK 5.26 18.6 27.28

455 mb 1500 mb 314 mb

e Once produced, the long-lived 7¢Lug
survives in the cooler external layers of
the convective flashes, outside of the
burning zone

176|
37.61x10°

« Accordingly, the detailed neutron density

: 176
and temperature profiles in the TPs have Yb
to be considered for the s-process : 12.76
calculations. ; 115.8 mb
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24Nb

* main production channel for Mo via
7*Nb(n,y)**Nb(B+V)

e 9“Nb comes indirectly from 22Zr, which
actually behave as stable in timescale
of TP-AGB stars evolution: its
presence, and thus the presence of
?“Mo, should be strongly
underabundant

 In presolar SiC grains this nucleus is
overabundant with respect to model’s
predictions, probably due to lifetime of
?“Nb itself

 B-decay rate of **Nb has a strong
dependence on stellar temperature

t, ,reduced from 20,000 yr at room

temperature to 0.5 yr at 108K and 9
days at 3 x 108 K
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r-process: basic ideas

e keyreactions: (A, Z)+neo (A+1,72)+y
« r-process requires initial highn_and T

> highn : 1T,y <<T

B-decay

> highn_ and T: (n, y) ©(y,n) along isotopic chain

> steady abundances intra-chain with one dominant nucleus
e [-decay rates of dominant nuclei regulate inter-chain flow
« equilibrium freeze-out: n_drops and B-decays take over
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r-process: uncertainties

e constraining the astrophysical site for the r process comes from the challenge
and shear number of measurements that must be performed on thousands of
short-lived neutron-rich nuclei far from stability that may participate in this
process

e For instance, neutron captures in the r process are believed to first exceed and
then compete with B decays allowing for the set of most abundant isotopes or
“path” to potentially push out to the neutron dripline

> B-decay lifetimes of these
nuclei are critical inputs for
the r-process (n,y)

1)set the timescale for heavy
element production if (n,y)-
(y,n) equilibrium occurs

2)help to shape the final 3-decay

pattern as the path moves / N
back to stability (n,7) (n,”) (n,y)

> many studies of 3-decay rates

most of which have focused - |
on so-called ‘waiting point’ Z waiting point

nuclei, for which the nucleus
abundance flow walits for its
decay to proceed
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r-process: peaks

 Wherever the path crosses mass number
isotopes with a closed 102,00 100 120 140 160 180 200 220 240
neutron shell, both the
neutron capture cross
sections and -decay rates
become significantly

smaller
80F N=50 ' I§§N=82 ' -:.E'fd:;'“:lzs
> accumulation of material bl
in these nuclei 70} ~'\\ -
o after the supply of free 60}
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extremely neutron-rich
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proton number
w
o
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r-process: simulation
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