The interplay between neutron captures and β-decays at unstable isotopes

Diego Vescovi^{1,2,3}, Maurizio Busso^{4,2}, Sara Palmerini^{4,2,}, and Sergio Cristallo^{3,2}

- 1. Gran Sasso Science Institute (GSSI), L'Aquila, Italia
 - 2. INFN Sezione di Perugia, Perugia, Italia
- 3. INAF Osservatorio Astronomico d'Abruzzo, Teramo, Italia
 - 4. Università degli Studi di Perugia, Perugia, Italia

Meeting Pandora Perugia - Italia, 30-31 Ottobre 2019

The origin of heavy elements in the Solar System

Astrophysical sites of the s-process

core-He/ shell-C burning in massive stars

Main s-process

H- and He-burning in TP-AGB stars

How do s-process neutron captures work?

Branching points: if $\tau_{\beta} \sim \tau_n \Rightarrow$ several paths are possible

Diego Vescovi - Perugia, 2019

Interplay between n-captures and β -decays

The main component: uncertainties

- experimental (n, γ) rates have been highly reduced in recent years reaching in some cases a precision smaller than 1 or 2 % (see e.g. Käppeler et al. 2011)
- However, the high s-process temperatures allow the **low-lying excited states to be populated** by the intense and energetic thermal photon bath
- ground state is accessible by experiment ⇒ <u>the effect of neutron captures in</u> <u>excited states has to be evaluated theoretically</u> and suffers from large uncertainties
- β-decay rates of some radioactive isotopes may be largely affected by variations of temperature and electron density
- the contribution of thermally populated excited levels and the effects of unknown transitions in a strongly ionized plasma can largely modify the β-decay rates at stellar temperatures.
- Takahashi & Yokoi (1987) investigated the β -decay rates of unstable heavy isotopes at temperatures and electron densities typical of stellar interiors (5 × 10⁷ $\leq T \leq 5 \times 10^8$ K; $10^{26} \leq n_e \leq 3 \times 10^{27}$ cm⁻³), finding <u>large deviations from the terrestrial values</u>
- temperature dependence of branchings is even more complex, <u>if branchigs have</u> <u>isomeric states that are thermalized at high temperatures through transitions via</u> <u>mediating states at higher excitation energy</u>
- → the abundances of the affected s-only isotopes carry direct information on the physical conditions occurring during the s-process, i.e. neutron density, temperature and density

The main component: uncertainties of major branches

We distinguish the s-only isotopes in three classes, according to their dependence on reaction branchings:

1)unbranched s-only isotopes, with unstable isobars having half-lives shorter than a couple of days (thus forbidding neutron captures during TPs)

¹⁰⁰Ru, ¹⁰⁴Pd, ¹¹⁰Cd, ¹¹⁶Sn, ¹²⁴Te, ¹⁵⁰Sm, ¹⁶⁰Dy, ¹⁹⁸Hg

2)s-only isotopes sensitive to neutron density only, with unstable isobars having half-lives (almost) constant in stellar environments

⁹⁶Mo, ¹⁷⁰Yb, ¹⁴²Nd, ¹⁸⁶Os, ¹⁹²Pt

- 3)s-only isotopes (^{134,136}Ba, ^{152,154}Gd, ¹⁷⁶Hf, ²⁰⁴Pb, ¹⁸⁰Ta^m, ¹²⁸Xe) affected by branch points with unstable isobars having β-decay rates quickly changing under stellar conditions:
 - nuclides sensitive to both neutron density and stellar temperature (and/or electron density): ¹³⁴Cs, ¹⁵¹Sm, ¹⁵⁴Eu, ¹⁷⁶Lu, ²⁰⁴Tl
 - nuclides less affected by neutron density, but dominated by stellar temperature and/or electron density gradients during TP: ¹⁷⁹Hf, ¹²⁸I

The branch at 134Cs I

The dominant uncertainty affecting the $^{134}\text{Ba}/^{136}\text{Ba}$ ratio derives from the β -decay rate of ^{134}Cs

→ the terrestrial half-life of 134Cs (t_{1/2} = 2.07 yr) is strongly reduced under stellar conditions (Takahashi & Yokoi 1987)

The branch at 134Cs II

- t_{1/2} decreases by a factor of 3 at T = 100 MK (0.67 yr) and by two orders of magnitude at T = 300 MK (3.8 d)
- Note that λ⁻(¹³⁴Cs) does not change with electron (or mass) density
- a small amount of ¹³⁴Cs is converted to ¹³⁵Cs during the peak neutron density at the bottom of the TPs
- → ¹³⁴Ba is temporarily reduced (by ~30%). The initial amount of ¹³⁴Ba is almost fully re-established as soon as the neutron density decreases.
- → almost the entire s-flow is directed towards ¹³⁴Ba, may resulting in a overestimate of solar ¹³⁴Ba

The branch at 176Lu I

- The ¹⁷⁶Lu/¹⁷⁶Hf ratio is largely affected by the branch at ¹⁷⁶Lu, which is strongly sensitive to the temperature during TPs
- ¹⁷⁶Lu has a short-lived isomer (t^m_{1/2} = 3.66 h) and an extremely long-lived ground state (t^g_{1/2} = 38 Gyr)
- internal transitions are highly forbidden by nuclear selection rules and any coupling can only be provided by states with intermediate quantum numbers and higher excitation energies
- the **low temperatures** during the ¹³Cpocket phase are not sufficient for that coupling, the s-process flow via both states has been treated independently

The branch at 176Lu II

- ¹⁷⁶Lu^g is produced via thermal transitions in the bottom layers of the advanced TPs, where temperatures are T ~ 300 MK
- Once produced, the long-lived ¹⁷⁶Lu^g survives in the cooler external layers of the convective flashes, outside of the burning zone
- Accordingly, the detailed neutron density and temperature profiles in the TPs have to be considered for the s-process calculations.

94Nb

- main production channel for ⁹⁴Mo via ${}^{93}Nb(n,\gamma){}^{94}Nb(\beta+\nu)$
- ⁹⁴Nb comes indirectly from ⁹³Zr, which actually behave as stable in timescale of TP-AGB stars evolution: its presence, and thus the presence of ⁹⁴Mo, should be strongly underabundant
- In presolar SiC grains this nucleus is overabundant with respect to model's predictions, probably due to lifetime of ⁹⁴Nb itself
- β-decay rate of ⁹⁴Nb has a strong dependence on stellar temperature
- $t_{_{1/2}}$ reduced from 20,000 yr at room temperature to 0.5 yr at 10 8 K and 9 days at 3 \times 10 8 K

	⁹³ Mo 4.00 ka β ⁺	⁹⁴ Mo 9.25 102 mb	⁹⁵ Mo 15.92 292 mb	⁹⁶ Mo 16.68 112 mb
	⁹² Nb 34.70 Ma β ⁺	⁹³ Nb 100 266 mb	⁹⁴ Nb 20.30 ka 482 mb, β ⁻	⁹⁵ Nb 34.99 d 310 mb, β ⁻
	⁹¹ Zr 11.22 60 mb	⁹² Zr 17.15 33 mb	⁹³ Zr 1.53 Ma 95 mb, β ⁻	⁹⁴ Zr 17.38 26 mb
	0.0			
0	[0W ₉₆ /0/	T_+t		
Ċ	⁴ ⁵⁶ -1.0 - ⊢			-
	-1.5	▶ ⊥ <u> </u>		(a <u>)</u>
	-1	.5 -1.0	0 -0.5	0.0
[⁹² Mo/ ⁹⁶ Mo]				

r-process: basic ideas

- key reactions: (A, Z) + $n \leftrightarrow$ (A + 1, Z) + γ
- r-process requires initial high n_n and T
 - $\rightarrow \text{ high } n_n : \tau_{(n,\gamma)} << \tau_{\beta\text{-decay}}$
 - → high n_n and T: $(n, \gamma) \leftrightarrow (\gamma, n)$ along isotopic chain
 - steady abundances intra-chain with one dominant nucleus
- β -decay rates of dominant nuclei regulate inter-chain flow
- equilibrium freeze-out: n_n drops and β -decays take over

r-process: uncertainties

- constraining the astrophysical site for the r process comes from the challenge and shear number of measurements that must be performed on thousands of short-lived neutron-rich nuclei far from stability that may participate in this process
- For instance, neutron captures in the r process are believed to first exceed and then compete with β decays allowing for the set of most abundant isotopes or "path" to potentially push out to the neutron dripline
- β-decay lifetimes of these nuclei are critical inputs for the r-process
 - 1) set the timescale for heavy element production if (n,γ) - (γ,n) equilibrium occurs
 - 2)help to <u>shape the final</u> <u>pattern</u> as the path moves back to stability
- many studies of β-decay rates most of which have focused on so-called 'waiting point' nuclei, for which the abundance flow waits for its decay to proceed

r-process: peaks

- Wherever the path crosses isotopes with a closed neutron shell, both the neutron capture cross sections and β-decay rates become significantly smaller
 - accumulation of material in these nuclei
- after the supply of free neutrons has ceased, the extremely neutron-rich isotopes undergo a series of β-decays to stability
- the mass numbers where the r-process path crossed the magic neutron numbers can be identified in the final abundance pattern by characteristic peaks

r-process: simulation

