Strange Matter Workshop - Strangeness studies in Italy and Japan

Status of kaonic atom experiments at J-PARC

Tadashi Hashimoto

K-atom experiments @ J-PARC K1.8BR

E62: K-He 3d-2p

sub-eV precision (ΔE_{2p}) to distinguish "deep" or "shallow" potential

E57: K⁻d 2p-1s

first measurement to resolve isospin-dependent K^{bar}N scat. length

Present status

Year	E62	E57		
2006	E17 proposal (1 st PAC)			

2014	TES demonstration @ PSI	E57 proposal (18 th PAC)			
2015	E62 proposal (20 th PAC) → stage-2 approval	updated proposal (20 th PAC) → stage-1 approval			
2016	Commissioning at K1.8BR (K-Li X-rays)				
2017					
2018	K-He Physics run (June)	SDD commissioning			
2019		K-H (+K-He) full commissioning (Feb.—Apr.)			
2020		to submit updated proposal			

K-He with TES

Transition-Edge-Sensor microcalorimeters

✓ Excellent energy_r<u>eso</u>tution ~32 $E = \frac{1}{2} \frac{1$

$$\left(\begin{array}{cc} \alpha \equiv \frac{d \, \ln R}{d \, \ln T} & \Delta E = \sqrt{\frac{k_B T^2 C}{\alpha}} & E_{max} \sim C T_C / \alpha \end{array} \right)$$

NIST TES system

J.N. Ullom et al., Synchrotron Radiation News, Vol. 27, 24 (2014) Au coated Si collimator

- 50mK cryostat
 - Pulse tube (60K, 3K) + ADR (1K, 50mK)
 - ADR hold time: > 1 day

Detector snout

- 240 pixel Mo-Cu bilayer TES
 30 ch TDM(time division multiplexing) readout
- ▶ 1 pixel : 300 x 320 $\text{um}^2 \rightarrow \text{total} \sim 23 \text{ mm}^2$
- 4 um Bi absorber \rightarrow efficiency ~0.85@6 keV

T. Hashimoto@20191016

Bi + TES

TES cryostat

0

0

0

0

SDD 9

TES 50mK snout

 \bigcirc

K-He 25 x-rays

calib. x-rays

X-ray generator

He target

Cr

vostat

Liq. ³He or ⁴He target cell

T. Hashimoto@20191016

<u>TES</u>

We can reduce the background by factor 3~4 using beam info.

Publication should come soon on the shifts and widths.

- More experiences with TES
 - at Muon beam line in J-PARC. (Apr. 2019)
 - at Synchrotron Radiation Facility (SPring-8, July, 2019)
- TES in DAFNE?? Machine background??

K-Li/He/H₂ with SDD

SDDs in commissioning run in 2016 3-day beam time

J-PARC 23rd PAC Meeting

E57 - SDD test setup.

-> N568 CAEN Shaping Amp. -> V785 CAEN PADC

4 arrays installed 24/36 channels worked

Kaonic Lithium with SDDs

- Now more X-ray counts and better S/N with updated event selection.
- ► Need to check everything once again…

Now (very preliminary)

Kaonic Lithium

Fig. 1. Measured spectra obtained with Li (metal) and LiH target. The Li spectra was obtained with 2.7×10^7 kaons stopping in the target whilst for LiH the number of stopping kaons was 1.9×10^7 .

- S/N is worse in our spectrum, but we have a lot more X-ray count
- Shift : ~ 2 eV stat. error
- ▶ Width : ~ 5 eV stat. error?
- > Yield :
 - might better to use partial dataset with relatively stable beam condition
 - Compare with K+ decay and K- vertex analysis to confirm the # of stopped kaons in the Li block

X-ray yields from Kaonic Helium

Page 4 of 4

Eur. Phys. J. A (2014) **50**: 91

Table 2. Absolute X-ray yields of K^{-3} He and K^{-4} He measured in gas targets. The yields are shown in percentages per stopped K^{-} . The experimental results for liquid ⁴He, refs. [1,3], are also shown in the last columns. The value of L_{high} in the liquid density data [3] includes the contribution of $L\delta$ only.

Transition	3 He (0.96 g/l)	${}^{4}\text{He}\ (1.65\text{g/l})$	${}^{4}\text{He}\ (2.15\text{g/l})$	4 He (Liquid) [1]	4 He (Liquid) [3]
$L\alpha$	$25.0^{+6.7}_{-5.8}$	$23.1_{-4.2}^{+6.0}$	$17.2^{+2.6}_{-9.5}$	9.2 ± 2.4	8.9 ± 4.5
$L\beta$	$3.6^{+1.3}_{-0.7}$	4.2 ± 1.1	$3.1^{+0.6}_{-1.6}$	5.2 ± 1.3	2.3 ± 1.2
$L\gamma$	$1.3^{+0.5}_{-0.4}$	1.3 ± 0.6	$0.7\substack{+0.3 \\ -0.5}$	2.4 ± 0.7	1.6 ± 0.8
$L_{\rm high}$	5.2 ± 2.1	$6.9^{+2.0}_{-1.9}$	$4.1^{+1.1}_{-2.1}$	—	$0.4\pm0.3^*$

X-ray yields

- Liquid Helium-3: new data
- Liquid Helium-4: data only in 1970's
- Not so good secondary particle detectors in E62
- No theoretical calculation to compare (?)
- Gaseous Helium-4 with E57 setup is possible as well
 - limited statistics, but (potentially) well controlled systematics.

E57 setup as of Feb. 2019

 \checkmark 30 SDD units installed.

✓ ~145 ch in 26 units worked. (145/208 ~ 70%)
 ✓ Target gas at 30K, 3.5bar, SDDs at 190K

SDD Readout for J-PARC E57/E62

to CAEN V785 PADC

Vertex reconstruction (BPC&CDC)

100

80

_60

-80

wnstream_x_y_cop

Std Dev x 30.29

Dev y

3 46

3.719

30.3

100

10

70<Z<130

-60<Z<60

<u>Enarged particle vETO on SDDs using CDC</u>

MIP traversing SDD at some distance from the edge \rightarrow large signal > 150 keV

MIP traversing SDD at the edge of the active area \rightarrow small signal

electron from secondary produced near the SDD

X-ray or electron from secondary produced in the setup

Correlation between the CDC charged track and the SDD position was clearly observed \rightarrow We can remove charged particle events on SDDs

Helium data in E57

Reasonable event reduction rate ~ 1/3 with CDS (not confirmed the details of the CDS analysis yet) 20

Helium data in E57

~6 hour data taking

- 80 counts KHeLa
- almost background free as designed

<u>Hydrogen data in E57</u>

channel dependent intensity and ratio Cu/Zn

Hydrogen data

!?

Ti

~90 hour data taking

Kaon + DEFdE Kaon + DEFdE + CDS

23

Hydrogen data

~90 hour data taking

K-C Kaon + DEFdE + CDS

K-C

line shape from SIDDHARTA

- Higher transitions are observed
- ▶ at most 50 counts Ka X-rays

Ti

Kaonic Kapton lines cannot be completely removed with the CDS.

To confirm # of stopped kaons

- We should estimate realistic# of stopped kaons from data
- K-p -> π Σ
- $\blacktriangleright \mathsf{K}^+ \rightarrow \mu^+ \nu, \ \pi^0 \pi^+$

Restore energy resolution

- Crosstalk due to unstable power line of CUBE
- Partial restoration by analysis (not yet applied to physics data)
- ▶ Now 150~160 eV FWHM @ FeKa

Possible change in the Beamline

- The last dipole magnet (D5) is just to change the direction to keep enough flight length for the forward TOF counters.
- ▶ Without D5, ~3m shorter beam line & better beam focusing.

SDDs in a hydrogen atmosphere

- ✓ larger hydrogen volume
- ✓ no window
- ✓ no Kaonic Kapton lines
- ✓ Chance to detect lines to 2p state

We have already succeeded to operate SDDs in a hydrogen (<10bar, 135K) in Vienna!

<u>Summary</u>

Experiment	Year	Target	TES	SDD
Stoptune	2016	Lithium		Shift/Width? Yield?
E62	2018	Liq. Helium-3	Shift Width	Yield
E62	2018	Liq. Helium-4	Shift Width	Yield
E57	2019	Gas Helium-4		Yield?
E57	2019 2021??	Gas Hydrogen		Shift/Width? Yield?
E57	2022??	Gas Deuterium		???