$\Lambda(1405)_{pn}$ at J-PARC

"Strange Matter Workshop - Strangeness studies in Italy and Japan" Laboratori Nazionali di Frascati INFN 16-17 October 2019

We observed the "K⁻pp" Bound-State

PLB789(2019)620.

• Spin/Parity of the "K⁻pp"

• Spin/Parity of the "K⁻pp"

Spin/Parity of the "K⁻pp"

- Spin/Parity of the "K⁻pp"
 New 4π detector system is needed *← Future plan*
- Other decay channels
 - $\underline{\pi\Sigma N}$ mesonic decay is theoretically expected to be the dominant channel
 - Only YN non-mesonic decays were reported

- Reaction mechanism
 - Relation between Λ (1405) & "K⁻pp"
 - Λ(1405) has been considered as <u>"K-p"</u>
 - Theoretically, "K⁻pp" is expected to be produced via <u>Λ(1405)+p→"K⁻pp" door-way process</u>

- Reaction mechanism
 - Relation between Λ (1405) & "K⁻pp"
 - Λ(1405) has been considered as <u>"K-p"</u>
 - Theoretically, "K⁻pp" is expected to be produced via <u>Λ(1405)+p→"K⁻pp" door-way process</u>

• Spin/Parity of the "K⁻pp"

- Other decay channels
 - $\frac{\pi \Sigma N}{\pi \Sigma N}$ mesonic decay is theoretically expected the dominant channel
 - Only YN non-mesonic decays were
- Reaction mechanism
 - Relation between Λ 4×14 K^{-} pp"
 - Λ(1405) has been ^(K-p")
 - Theoretically, "N→" is expected to be produced via <u>Λ(1405)+p→"K⁻pp" door-way process</u>

$K^{-3}He \rightarrow \pi \Sigma pn$ Measurement

Neutron ID with CDS

- $\pi^+\pi^-p$ events (3 tracks) in CDS with 4 CDH hits are selected
- a CDH hit with CDC-veto (outer-layer) is applied to identify the "neutral hit"

Neutron can be identified with CDS

$\pi\Sigma pn$ Events

Selection of $\pi^{\pm}\Sigma^{\mp}pn$ Final State

- $\pi^{\pm}\Sigma^{\mp}$ events are separated using kinematical-fit
 - Constraints:
 - M(Σ→nπ)
 - 4-momentum conservation
 - Event selection by χ^2 probability (0.01<p)

 $\pi\pi pn\Lambda/\Sigma^0$ contribution can be seen

Selection of $\pi^{\pm}\Sigma^{\mp}pn$ Final State

- $\pi^{\pm}\Sigma^{\mp}$ events are separated using kinematical-fit
 - Constraints:
 - M(Σ→nπ)
 - 4-momentum conservation
 - Event selection by χ^2 probability (0.01<p)

simple BG evaluation & subtraction

Selection of $\pi^{\pm}\Sigma^{\mp}pn$ Final State

Y*pn Final State w/ simple BG subt.

Λ(1405)pn Final State Selection

IM($\pi\Sigma p$) in Λ (1405)pn Final State

IM($\pi\Sigma p$) in Λ (1405)pn Final State

PS Limitation of "K⁻pp" $\rightarrow \pi \Sigma p$ Decay

Comparison of $\Lambda pn \& \Lambda(1405)pn$

Summary

- We observed the "K⁻pp" bound state in ³He(K⁻,Λp)n
 - Binding energy: ~50 MeV
 - Width: ~100 MeV

← PLB789(2019)620.

- We found large CS of the Λ(1405)p formation compared to the "K⁻pp"
 - quite important information on the production mechanism of the "K⁻pp"

\leftarrow paper in preparation

Thank You!

J-PARC E15 Collaboration

S. Ajimura^a, H. Asanoⁿ, G. Beer^b, C. Berucci^f, H. Bhang^c, M. Bragadireanu^e, P. Buehler^f, L. Busso^{g,h}, M. Cargnelli^f, S. Choi^c, C. Curceanu^d, S. Enomoto^o, H. Fujioka^m, Y. Fujiwara^k, T. Fukuda^l, C. Guaraldo^d, T. Hashimoto^u, R. S. Hayano^k, T. Hiraiwa^a, M. Iio^o, M. Iliescu^d, K. Inoue^a, Y. Ishiguro^j, T. Ishikawa^k, S. Ishimoto^o, K. Itahashiⁿ, M. Iwai^o, M. Iwasaki^{m,n*}, K. Kanno^k, K. Kato^j, Y. Katoⁿ, S. Kawasakiⁱ, P. Kienle ^{+ p}, H. Kou^m, Y. Maⁿ, J. Marton^f, Y. Matsuda^q, Y. Mizoi^l, O. Morra^g, T. Nagae^{j\$}, H. Noumi^a, H. Ohnishi^w, S. Okadaⁿ, H. Outaⁿ, K. Piscicchia^d, Y. Sada^a, A. Sakaguchiⁱ, F. Sakumaⁿ, M. Sato^o, A. Scordo^d, M. Sekimoto^o, H. Shi^d, K. Shirotori^a, D. Sirghi^{d,e}, F. Sirghi^{d,e}, K. Suzuki^f, S. Suzuki^o, T. Suzuki^k, K. Tanida^u, H. Tatsuno^v, M. Tokuda^m, D. Tomono^a, A. Toyoda^o, K. Tsukada^r, O. Vazquez Doce^{d,p}, E. Widmann^f, T. Yamagaⁿ, T. Yamazaki^{k,n}, H. Yim^t, Q. Zhangⁿ, and J. Zmeskal^f

(a) Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Japan 🔎 (b) Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6, Canada 🛃 (c) Department of Physics, Seoul National University, Seoul, 151-742, South Korea (d) Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy (e) National Institute of Physics and Nuclear Engineering - IFIN HH, Romania (f) Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria 💳 (g) INFN Sezione di Torino, Torino, Italy (h) Dipartimento di Fisica Generale, Universita' di Torino, Torino, Italy (i) Department of Physics, Osaka University, Osaka, 560-0043, Japan 🖲 (j) Department of Physics, Kyoto University, Kyoto, 606-8502, Japan 💻 (k) Department of Physics, The University of Tokyo, Tokyo, 113-0033, Japan 💻 (I) Laboratory of Physics, Osaka Electro-Communication University, Osaka, 572-8530, Japan 🔎 (m) Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan 🔎 (n) RIKEN Nishina Center, RIKEN, Wako, 351-0198, Japan 🔎 (o) High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan 🔎 (p) Technische Universität München, D-85748, Garching, Germany 📒 (q) Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan 🔎 (r) Department of Physics, Tohoku University, Sendai, 980-8578, Japan 🔎 (s) Excellence Cluster Universe, Technische Universität München, D-85748, Garching, Germany 💳 (t) Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 139-706, South Korea 💽 (u) ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan 💻 (v) Department of Chemical Physics, Lund University, Lund, 221 00, Sweden (w) Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai, 982-0826, Japan 👤

Spares

Comparison of $\Lambda pn \& \Lambda(1405)pn$

Λpn

- No clear structure below M(Kpp) in the IM($\pi\Sigma$ p)
- QF followed by $\Lambda(1405)p$ is dominant

Detector Acceptance: Ap vs. $\pi\Sigma p$

 $K^{-}p \rightarrow \Sigma^{+}\pi^{-}/\Sigma^{-}\pi^{+}$ Cross Section

Need further investigation

More quantitative studies of the "K⁻pp"

J^P and other decay modes

Systematic studies of other kaonic nuclei:
Single: "K⁻ppn" via [K⁻ + ⁴He], "K⁻ppnn/K⁻pppnn" via [K⁻ + ⁶Li]
Double: "K⁻K⁻pp" via [p^{bar} + ³He]

A new 4π detector with γ/n sensitive detectors is required