AMADEUS: K⁻ four nucleon absorption process in the Λ-triton channel

1

Investigation of in-medium modification of the KN interaction fundamental for the low-energy QCD in the non perturbative regime.

Chiral perturbation theory (ChPT): effective field theory where mesons and baryons represent the effective degrees of freedom instead of the fundamental quark and gluon fields.

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

- chiral symmetry is spontaneously broken → existence of massless and spinless Nambu-Goldstone bosons which are identified with the pions (SU(2)). Explicitly broken by quark masses.
- **very successful** in describing the πN , $\pi \pi$ and NN interactions in the low-energy regime.

Problematic extension of the theory to the s sector, not directly applicable to the KN channel.

ChPT not applicable to the KN channel due to the emerging of the $\Lambda(1405)$ and the $\Sigma(1385)$ resonances just below the KN mass threshold (~1432 MeV)

• $\Lambda(1405)$ I=0 J^P = $\frac{1}{2}^{-1}$ M = (1405.1^{+1.3}-1.0) MeV Γ = (50.5 ± 2.0) MeV decay modes: $\Sigma \pi$ (I=0) 100%

• $\Sigma(1385)$ I=1 JP = 3/2⁺ decay modes: $\Lambda \pi$ (I=1) (87.0 ± 1.5) % $\Sigma \pi$ (I=1) (11.7 ± 1.5) %

Possible solutions:

Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
 Phenomenological KN and NN potentials

The parameters of the models are constrained by the existing scattering data \rightarrow above the threshold

Phen. [Y. Ikeda and T. Sato, Phys. Rev. C76, 035203 (2007)] Chiral [S. Ohnishi, Y. Ikeda, T. Hyodo, W. Weise, Phys.Rev. C93 (2016) no.2, 025207]

...but... large differences in the subthreshold extrapolations! Significantly weaker attraction in chiral SU(3) models than in phenomenological potential models.

The $\Lambda(1405)$ case

EXAMPLE 1 Chiral unitary models: $\Lambda(1405)$ is an I = 0 quasibound state emerging from the coupling between the \overline{KN} and the $\Sigma\pi$ channels. Two poles in the neighborhood of the $\Lambda(1405)$:

1440

1420 1400

Re[z] [MeV]

Chiral dynamics predicts significantly weaker attraction than AY (local, energy independent) potential in far-subthreshold region

How deep can an antikaon be bound in a nucleus?

Possible Bound States:

$$\begin{array}{ll} (K^{-} pp) \rightarrow \Lambda p & (K^{-} ppn) \rightarrow \Lambda d \\ \rightarrow \Sigma^{0} p & \rightarrow \Sigma^{0} d \end{array}$$

predicted <u>if</u> strong KN interaction in the I=0 channel. [Wycech (1986) - Akaishi & Yamazaki (2002)]

K⁻pp bound state

....at the end of 2015

	BE (MeV)	Γ (MeV)	Reference
Dote, Hyodo, Weise	17-23	40-70	Phys.Rev.C79 (2009) 014003
Akaishi, Yamazaki	48	61	Phys.Rev.C65 (2002) 044005
Barnea, Gal, Liverts	16	41	Phys.Lett.B712 (2012) 132-137
Ikeda, Sato	60-95	45-80	Phys.Rev.C76 (2007) 035203
Ikeda, Kamano, Sato	9-16	34-46	Prog.Theor.Phys. (2010) 124(3): 533
Shevchenko, Gal, Mares	55 - 70	90-110	Phys.Rev.Lett.98 (2007) 082301
Revai, Shevchenko	32	49	Phys.Rev.C90 (2014) no.3, 034004
Maeda, Akaishi, Yamazaki	51.5	61	Proc.Jpn.Acad.B 89, (2013) 418
Bicudo	14.2-53	13.8 - 28.3	Phys.Rev.D76 (2007) 031502
Bayar, Oset	15 - 30	75-80	Nucl.Phys.A914 (2013) 349
Wycech, Green	40-80	40-85	Phys.Rev.C79 (2009) 014001

Experiments reporting DBKNS			
KEK-PS E549	T. Suzuki at al. MPLA23, 2520-2523 (2008)		
FINUDA	M. Agnello et al. PRL94, 212303 (2005)	Extraction of a signal	
DISTO	T. Yamazaki et al. PRL104 (2010)	Extraction of a signal	
OBELIX	G. Bendiscioli et al. NPA789, 222 (2007)	Extraction of a signal	
HADES	G. Agakishiev et al. PLB742, 242-248 (2015)	Upper limit	
LEPS/SPring-8	A.O. Tokiyasu et al. PLB728, 616-621 (2014)	Upper limit	
J-PARC E15	T. Hashimoto et al. PTEP, 061D01 (2015)	Upper limit	
J-PARC E27	Y. Ichikawa et al. PTEP, 021D01 (2015)	Extraction of a signal	

How deep can an antikaon be bound in a nucleus?

interpreted in

T. Sekihara, E. Oset, A. Ramos, Prog. Theor. Exp. Phys (2016) (12): 123D03

[from the talk of T. Nagae at HYP2015, Sep. 10, 2015]

Bound state search in K- induced reactions

E549 at KEK: $K_{stop}^{-} + {}^{4}He \rightarrow \Lambda + p + X'$

detected particles

- **1NA**: K⁻ single nucleon absorption
- 2NA: K⁻ two nucleon absorption
- 2NA + conversion, multi-nucleon, or Bound State?

Measurement of yields and shapes of the K- multinucleon yields is mandatory to solve the puzzle!

They are the counterpart of the non-resonant single nucleon capture

and K- multi-nucleon cross section?

In medium K properties investigated in heavy-ion & proton nuclei collisions, K⁻ mass modification extrapolated from the K⁻ production yield Transport models and collision calculations need the measurement of the Kmulti-nucleon cross sections at low energy

still missing!

...

AMADEUS scientific case

- Nature of the $\Lambda(1405)$ & K⁻N amplitude below threshold \rightarrow **Y** π **CORRELATION STUDIES**
- K⁻ multi-nucleons absorptions cross sections
- kaonic nuclear clusters
 - \rightarrow **YN CORRELATION STUDIES** (i.e. Λp , $\Sigma^0 p$, and Λt final states)
 - Low-energy charged kaon cross sections for low momenta (100 MeV/c)
 - YN scattering → extremely poor experimental information from scattering data (strong impact on the EoS of Neutron Stars Related to NS merging radiation + GW emission)

AMADEUS & DAΦNE

DAΦNE

- double ring e⁺e⁻ collider working at C.M. energy of φ, producing ≈ 1000 φ /s
 φ → K⁺K⁻ (BR = (49.2 ± 0.6)%)
 low momentum Kaons ≈ 127 Mev/c
 back to back K⁺K⁻ topology
- DAONE 32.5 m 23.3 m 23.3 m

AMADEUS step 0 \rightarrow KLOE 2004-2005 dataset analysis ($\mathscr{L} = 1.74 \text{ pb}^{-1}$)

KLOE

• Cilindrical drift chamber with a 4π geometry and electromagnetic calorimeter

• 96% acceptance

- optimized in the energy range of all **charged particles** involved
- good performance in detecting photons and neutrons checked by kloNe group [M. Anelli et al., Nucl Inst. Meth. A 581, 368 (2007)]

K⁻ absorption on light nuclei

from the materials of the KLOE detector DC gas (90% He, 10% C_4H_{10}) & DC wall (C + H)

<u>AT-REST</u> (K⁻ absorbed from atomic orbit) or <u>IN-FLIGHT</u> $(p_{\kappa} \sim 100 \text{MeV})$

Advantage: excellent resolution .. $\sigma_{p\Lambda} = 0.49 \pm 0.01 \text{ MeV/c}$ in DC gas $\sigma_{m\gamma\gamma} = 18.3 \pm 0.6 \text{ MeV/c}^2$

Disadvantage: Not dedicated target \rightarrow different nuclei contamination \rightarrow complex interpretation .. but \rightarrow new features .. K⁻ in flight absorption.

K⁻ - 4NA cross section & BR

At available data

Available data:

• in Helium :

- bubble chamber experiment [M.Roosen, J.H. Wickens, II Nuovo Cimento 66, (1981), 101] K⁻ stopped in liquid helium, Λ dn/t search. 3 events compatible with the Λ t kinematics were found

BR(K⁻⁴He \rightarrow \wedge t) = (3 ± 2) × 10⁻⁴/K_{stop}

global, no 4NA

Solid targets

- FINUDA [Phys.Lett. B669 (2008) 229] (40 events in different solid targets)

∧t available data

FINUDA presented [Phys.Lett.B (2008) 229]:

- a study of Λ vs t momentum correlation and an opening angle distribution
- 40 events collected and added together coming from different targets (^{6,7}Li, ⁹Be)

$K^{-4}He \rightarrow \Lambda t$ cross section, DC gas sample contributing processes:

single nucleon absorption (1NA)

Spectator tritons have low momentum:

4NA processes – K⁻ absorbed on FREE α:

- $K^{-4}He \rightarrow \Lambda t$
- $K^{\text{-}\,4}He\ \rightarrow\ \Sigma^0 t$, $\Sigma^0\ \rightarrow\ \Lambda\gamma$

$K^{-4}He \rightarrow \Lambda t$ cross section, DC gas sample contributing processes:

Main background: K⁻ absorption on ¹²C (isobutane contamination)

4NA: $K^{-12}C \rightarrow K^{-}(\alpha)^{\text{bound }8}Be \rightarrow \Lambda/\Sigma^{0} t {}^{8}Be$

7 MeV/c² lower invariant mass threshold respect to:

4NA: $K^{-4}He \rightarrow K^{-}(\alpha)^{\text{free}} \rightarrow \Lambda/\Sigma^{0} t$

⊢

all possible elastic/inelastic FSI processes with primary Λ/Σ formation

uncorrelated Λt low invariant mass:

Measured K^{- 12}C sample from K- captures in wall:

K- ⁴He \rightarrow At 4NA fit

K- ⁴He \rightarrow At 4NA fit

K- ${}^{12}C \rightarrow \Lambda/\Sigma^0 t {}^8Be$ 4NA without FSI

Thank you for your attention