Misure di perdita di energia nei gas mediante un bersaglio attivo

Antonio Maria Buccola

INFN - Sezione di Firenze e Università degli Studi di Firenze

30 settembre 2019

Istituto Nazionale di Fisica Nucleare

- Introduzione al contesto fisico
- Principio di funzionamento del bersaglio attivo
- Il test ai Laboratori Nazionali del Sud
- Conclusioni

Introduzione al contesto fisico

A proposito di nuclei esotici

Per esplorare zone lontane dalla valle di stabilità è necessario utilizzare un **fascio** che sia già esotico in partenza

Per esplorare zone lontane dalla valle di stabilità è necessario utilizzare un **fascio** che sia già esotico in partenza

TUTTAVIA

Il fascio *esotico* è prodotto con **bassa intensità** ($\sim 10^3 - 10^4$ pps)

Per esplorare zone lontane dalla valle di stabilità è necessario utilizzare un **fascio** che sia già esotico in partenza

TUTTAVIA

Il fascio *esotico* è prodotto con **bassa intensità** ($\sim 10^3 - 10^4$ pps)

 \Rightarrow Necesario un apparato con elevata copertura angolare e granularità per massimizzare l'efficienza

Per esplorare zone lontane dalla valle di stabilità è necessario utilizzare un **fascio** che sia già esotico in partenza

TUTTAVIA

Il fascio *esotico* è prodotto con **bassa intensità** ($\sim 10^3 - 10^4$ pps)

 \Rightarrow Necesario un apparato con elevata copertura angolare e granularità per massimizzare l'efficienza

 \implies Principio del **bersaglio attivo**

Stesso principio di una camera a ionizzazione

Stesso principio di una camera a ionizzazione

I frammenti da rivelare sono prodotti **all'interno** del mezzo gassoso

Misura diretta del vertice d'interazione e dell'energia persa dal fascio prima dell'interazione

Stesso principio di una camera a ionizzazione

I frammenti da rivelare sono prodotti **all'interno** del mezzo gassoso

Misura diretta del vertice d'interazione e dell'energia persa dal fascio prima dell'interazione

Identificazione dei frammenti mediante tracciamento o $\Delta E - E$ con rivelatori ancillari

• Reazioni di trasferimento di nucleoni: (d, p), $(d, {}^{3}\text{He})$, $(p, \alpha) \dots$ ${}^{11}\text{Li}(p, {}^{3}\text{H})$ ${}^{9}\text{Li}$, E = 3 AMeV

I. Tanihata et al., PRL 100, 192502 (2008)

- Decadimenti *esotici*: $p, 2p, \beta p, \beta 2p$ ¹¹Be \rightarrow ¹⁰Be + p + e^- *Y. Ayyad et al.*, *PRL 123*, 08250 (2019)
- Fissione indotta mediante trasferimento

 238 U + 12 C, E = 6.55 AMeV

C. Rodriguez - Tajes et al., NPA 958, 246 (2017)

• Scattering inelastico o risonante ${}^{68}\text{Ni}(\alpha, \alpha') \, {}^{68}\text{Ni}^*, E = 50 \text{ AMeV}$

M. Vandebrouck, et al., PRL 113, 032504 (2014)

Vantaggi

- Alta copertura angolare
- Basse soglie di rivelazione
- La perdita di energia del fascio nel bersaglio può essere misurata
- Ricostruzione della cinematica mediante tracciamento in 3D

Rispetto ad un esperimento a bersaglio fisso

- Serve un'alta segmentazione del catodo per avere buona risoluzione, per cui l'elettronica deve gestire un elevato numero di canali ($\sim 1 10 \text{ k}$)
- L'intensità del fascio non può essere troppo elevata ($i \lesssim 10^5$ pps)
- É necessario un controllo accurato dell'intero sistema pressione e ricircolo del gas, guadagni, uniformità del campo elettrico

Bersaglio Attivo: preparazione di un esperimento

Antonio Buccola

Apparati basati sul principio del bersaglio attivo

C. E. Demonchy et al., NIM A 583 (2007) 341 - 349

Identificazione dei frammenti Frammento fermato **all'interno** del gas attivo

- Discriminazione ¹H, ²H, ³H
- Identificazione in carica per $Z \ge 2$

T. Roger et al., NIM A 638 (2011) 134 - 142

C. E. Demonchy et al., NIM A 583 (2007) 341 - 349

Identificazione dei frammenti Frammento fermato **all'interno** del gas attivo

- Discriminazione ¹H, ²H, ³H
- Identificazione in carica per $Z \ge 2$

T. Roger et al., NIM A 638 (2011) 134 - 142

N.B. Dipende dai settaggi dell'apparato

C. E. Demonchy et al., NIM A 583 (2007) 341 - 349

Identificazione dei frammenti Frammento fermato **all'interno** del gas attivo

- Discriminazione ¹H, ²H, ³H
- Identificazione in carica per $Z \ge 2$

T. Roger et al., NIM A 638 (2011) 134 - 142

N.B. Dipende dai settaggi dell'apparato

Frammento fermato nei **rivelatori ancillari**: $\Delta E - E \rightarrow$ identificazione in carica

Un esempio di esperimento realizzato con MAYA

⁶⁸Ni(α, α') ⁶⁸Ni* **Fascio** di ⁶⁸Ni @ E = 50 AMeV ⁷⁰Zn @ E = 62.3 AMeV ⁹Be, t = 29 mg/cm² i = 4000 pps **Gas:** He (95%) + CF₄ (5%), P = 500 mbar

Un esempio di esperimento realizzato con MAYA

⁶⁸Ni(α , α') ⁶⁸Ni^{*} **Fascio** di ⁶⁸Ni @ E = 50 AMeV ⁷⁰Zn @ E = 62.3 AMeV ⁹Be, t = 29 mg/cm² i = 4000 pps **Gas**: He (95%) + CF₄ (5%), P = 500 mbar

$$\theta_L = 0^\circ \div 90^\circ \leftrightarrow \theta_{CM} = 1^\circ \div 10^\circ$$

Grosse variazioni $\theta_L \leftrightarrow$ Piccole variazioni θ_{CM}

 $E_{\alpha}^{rec} = (0.3 \div 4) \text{ MeV}$ $R_{\alpha} = 3 \div 28 \text{ cm}$

Un esempio di esperimento realizzato con MAYA

⁶⁸Ni(α, α') ⁶⁸Ni^{*} **Fascio** di ⁶⁸Ni @ E = 50 AMeV ⁷⁰Zn @ E = 62.3 AMeV ⁹Be, t = 29 mg/cm² i = 4000 pps **Gas**: He (95%) + CF₄ (5%), P = 500 mbar

$$\theta_L = 0^\circ \div 90^\circ \leftrightarrow \theta_{CM} = 1^\circ \div 10^\circ$$

Grosse variazioni $\theta_L \leftrightarrow$ Piccole variazioni θ_{CM}

$$E_{\alpha}^{rec} = (0.3 \div 4) \text{ MeV}$$

$$R = -3 \div 28 \text{ cm}$$

Identificazione del processo mediante le curve cinematiche

Risultati

$$E_{\rm Ni}^* = E_{int} - E_\alpha - E_{\rm Ni}$$

Distribuzioni angolari

Evoluzione dell'intensità del picco associato ad ogni transizione individuata al variare di θ_{CM}

Confronto con le distribuzioni attese in Distorted Wave Born Approximation

E = 21.1 MeV: risonanza isoscalare gigante di monopolo (ISGMR)

E = 12.9 MeV: *soft* ISGMR (prima evidenza)

Risultati importanti nella fisica dei fasci esotici ottenuti da MAYA:

- 68 Ni (α, α') 68 Ni* *M. Vandebrouck, et al., PRL 113, 032504 (2014)*
- ¹¹Li(*p*, ³H) ⁹Li *I. Tanihata, et al., PRL 100, 192502 (2008)*
- E non solo questi ...

Risultati importanti nella fisica dei fasci esotici ottenuti da MAYA:

- 68 Ni (α, α') 68 Ni* *M. Vandebrouck, et al., PRL 113, 032504 (2014)*
- ¹¹Li(*p*, ³H) ⁹Li *I. Tanihata, et al., PRL 100, 192502 (2008)*
- E non solo questi ...

Sviluppo di una **seconda** generazione di bersagli attivi Obiettivo: **miglioramento della risoluzione spaziale** Risultati importanti nella fisica dei fasci esotici ottenuti da MAYA:

- 68 Ni (α, α') 68 Ni* *M. Vandebrouck, et al., PRL 113, 032504 (2014)*
- ¹¹Li(*p*, ³H) ⁹Li *I. Tanihata, et al., PRL 100, 192502 (2008)*
- E non solo questi ...

Sviluppo di una **seconda** generazione di bersagli attivi Obiettivo: **miglioramento della risoluzione spaziale**

- Riduzione delle dimensioni del singolo pad
- Aumento del numero dei segmenti del pad plane
- Sistema di moltiplicazione basato sulle micromegas
- Sviluppo di un'elettronica specifica per i bersagli attivi (GET)

Seconda generazione di bersagli attivi

ATS: Active Target for SPES [T. Roger, et al., NIM A 895 (2018) 126 - 134]

Seconda generazione di bersagli attivi

ATS: Active Target for SPES [T. Roger, et al., NIM A 895 (2018) 126 - 134]

Futuro di ATS: fisica dei fasci esotici @ SPES, Laboratori Nazionali di Legnaro

Seconda generazione di bersagli attivi

ATS: Active Target for SPES [T. Roger, et al., NIM A 895 (2018) 126 - 134]

Futuro di ATS: fisica dei fasci esotici @ **SPES**, Laboratori Nazionali di Legnaro Prima di SPES: **esperimenti** e **test** ai Laboratori Nazionali del Sud

• ${}^{20}\text{Ne}(\alpha, \alpha') {}^{20}\text{Ne}^* @ E = 60 \text{ AMeV}$ Studio del *breathing mode* del ${}^{20}\text{Ne}$

• ${}^{20}\text{Ne}(\alpha, \alpha') {}^{20}\text{Ne}^* @ E = 60 \text{ AMeV}$ Studio del *breathing mode* del ${}^{20}\text{Ne}$

• 136 Xe(d, p) 137 Xe, @ E = 10 AMeV Test per il bersaglio attivo con un fascio ad alto Z ($Z_{Xe} = 54$) per studiare il comportamento dell'apparato in situazioni di alta ionizzazione (accorgimenti per il ricircolo del gas, saturazione dell'elettronica)

- ${}^{20}\text{Ne}(\alpha, \alpha') {}^{20}\text{Ne}^* @ E = 60 \text{ AMeV}$ Studio del *breathing mode* del ${}^{20}\text{Ne}$
- 136 Xe(d, p) 137 Xe, @ E = 10 AMeV Test per il bersaglio attivo con un fascio ad alto Z ($Z_{Xe} = 54$) per studiare il comportamento dell'apparato in situazioni di alta ionizzazione (accorgimenti per il ricircolo del gas, saturazione dell'elettronica)
- 136 Xe $(d, {}^{3}$ He) 135 I @ E = 10 AMeV Misura degli stati eccitati di 135 I, noti solo tramite decadimento β di 135 Te

- ${}^{20}\text{Ne}(\alpha, \alpha') {}^{20}\text{Ne}^* @ E = 60 \text{ AMeV}$ Studio del *breathing mode* del ${}^{20}\text{Ne}$
- 136 Xe(d, p) 137 Xe, @ E = 10 AMeV Test per il bersaglio attivo con un fascio ad alto Z ($Z_{Xe} = 54$) per studiare il comportamento dell'apparato in situazioni di alta ionizzazione (accorgimenti per il ricircolo del gas, saturazione dell'elettronica)
- 136 Xe $(d, {}^{3}$ He) 135 I @ E = 10 AMeV Misura degli stati eccitati di 135 I, noti solo tramite decadimento β di 135 Te
- ${}^{208}\text{Pb}(d,p) {}^{209}\text{Pb}$ and ${}^{208}\text{Pb}(\alpha,p) {}^{211}\text{Bi} @ E = 15 \text{ AMeV}$ Fissione indotta tramite trasferimento di nucleoni per determinare la barriera di fissione di nuclei pesanti a bassa energia

Test ai Laboratori Nazionali del Sud con ATS (dicembre 2018)

Le motivazioni del test

Caratterizzazione dell'apparato

Caratterizzazione dell'apparato

Misura dei **profili** di perdita di energia nei gas di alcuni nuclei stabili, dal Li al Ti, per confronto fra i modelli e le parametrizzazioni e i dati sperimentali Caratterizzazione dell'apparato

Misura dei **profili** di perdita di energia nei gas di alcuni nuclei stabili, dal Li al Ti, per confronto fra i modelli e le parametrizzazioni e i dati sperimentali

Ricombinazione con gli elettoni nel mezzo per ioni a bassa velocità

Caratterizzazione dell'apparato

Misura dei **profili** di perdita di energia nei gas di alcuni nuclei stabili, dal Li al Ti, per confronto fra i modelli e le parametrizzazioni e i dati sperimentali

Ricombinazione con gli elettoni nel mezzo per ioni a bassa velocità

Non solo: ogni bersaglio attivo ha una regione di gas non attivo

La zona inattiva influisce sul calcolo dell'energia persa dal fascio e sulla stima dell'energia a cui avviene una reazione

Elettronica di misura & Micromegas

GET: General Electronics for Time Projection Chambers

- Elettronica specifica per TPCs (*Time Projection Chambers*) e bersagli attivi
- Gestione di un elevato numero dei canali (fino a 30k), altamente integrata
- Elettronica digitale

E. Pollacco et al., Phys. Proc. 37 (2012) 1799 - 1804

J. Giovinazzo et al., NIM A 840 (2016) 15-27

Schematizzazione delle micromegas

Valanga **localizzata** in una regione molto sottile $\sim 100~\mu{\rm m}$

Il fattore di moltiplicazione **dipende** dallo spessore

Scansione dello spessore **locale** delle *micromegas* utilizzate in ATS usando una sorgente monocromatica di raggi X ⇒ Stessa carica primaria prodotta

[T. Roger, et al., NIM A 895 (2018) 126 - 134]

Schematizzazione delle micromegas

Valanga **localizzata** in una regione molto sottile $\sim 100 \ \mu m$

Il fattore di moltiplicazione **dipende** dallo spessore

Scansione dello spessore **locale** delle *micromegas* utilizzate in ATS usando una sorgente monocromatica di raggi X ⇒ Stessa carica primaria prodotta

[T. Roger, et al., NIM A 895 (2018) 126 - 134]

Schematizzazione delle micromegas

Valanga **localizzata** in una regione molto sottile $\sim 100 \ \mu m$

Il fattore di moltiplicazione **dipende** dallo spessore

Variazioni guadagni dovute allo spessore $\sim 1\%$ < Variazioni canale per canale $\sim 10\%$

Scansione dello spessore **locale** delle *micromegas* utilizzate in ATS usando una sorgente monocromatica di raggi X ⇒ Stessa carica primaria prodotta

[T. Roger, et al., NIM A 895 (2018) 126 - 134]

Schematizzazione delle micromegas

Valanga **localizzata** in una regione molto sottile $\sim 100 \ \mu m$

Il fattore di moltiplicazione **dipende** dallo spessore

Variazioni guadagni dovute allo spessore $\sim 1\%$ < Variazioni canale per canale $\sim 10\%$

- \Rightarrow Equalizzazione dei guadagni della **sola** catena elettronica
- \Rightarrow Misura con un **pulser** esterno

Analisi Dati

Studio delle tracce acquisite

Uso un bersaglio attivo per misurare la perdita di energia nei gas

Uso un bersaglio attivo per misurare la perdita di energia nei gas

 \rightarrow **Escludo** qualunque reazione

Uso un bersaglio attivo per misurare la perdita di energia nei gas

 \rightarrow **Escludo** qualunque reazione

Uso un bersaglio attivo per misurare la perdita di energia nei gas

 \rightarrow **Escludo** qualunque reazione

Selezione degli eventi basata su

carica totale:

nessuna eccitazione del proiettile emessa in seguito come radiazione γ

numero di pads e range:

traccia di larghezza e lunghezza fissate

- Eventi **non** corrispondenti ad uno ione che perde energia e si ferma
- Rumore acquisito assieme alla traccia

Non devo ricostruire un vertice d'interazione \Rightarrow Non ho bisogno di ricavare z

Non devo ricostruire un vertice d'interazione \Rightarrow Non ho bisogno di ricavare z

La diffusione termica **può aumentare** la larghezza della traccia acquisita dal *pad plane* durante il moto di deriva.

Non devo ricostruire un vertice d'interazione \Rightarrow Non ho bisogno di ricavare z

La diffusione termica **può aumentare** la larghezza della traccia acquisita dal *pad plane* durante il moto di deriva.

Gas: CF₄, P = 69.6 mbar, T = 20 °C Campo di *drift*: $E_D = 44.1$ V/cm $\rightarrow v_D = 91.46 \ \mu\text{m}, D_T = 7 \cdot 10^3 \text{ cm}^2/\text{s}$ $t_D \sim \frac{h}{v_D} \sim 1 \ \mu\text{s}, \text{ con } h \sim 10 \text{ cm}$ $\sigma_T = \sqrt{2D_T t_D} \sim 1 \text{ mm}$

Non devo ricostruire un vertice d'interazione \Rightarrow Non ho bisogno di ricavare z

La diffusione termica **può aumentare** la larghezza della traccia acquisita dal *pad plane* durante il moto di deriva.

Pad: $2 \times 2 \text{ mm}^2 \rightarrow \text{Traccia larga 3 pad in media}$

Simulazione: 10k eventi per ogni coppia gas/ione mediante **TRIM** (*TRansport of Ion in Matter*)

Simulazione: 10k eventi per ogni coppia gas/ione mediante **TRIM** (*TRansport of Ion in Matter*)

ATTENZIONE

Simulazione: 10k eventi per ogni coppia gas/ione mediante **TRIM** (*TRansport of Ion in Matter*)

ATTENZIONE

Tra la finestra e il *pad plane* ci sono 50 mm di gas **non attivo**

Il fascio attraversa una finestra di *Mylar* di 6 µm prima di entrare nella camera in cui si trova il gas

Simulazione: 10k eventi per ogni coppia gas/ione mediante **TRIM** (*TRansport of Ion in Matter*)

ATTENZIONE

Tra la finestra e il *pad plane* ci sono 50 mm di gas **non attivo**

Il fascio attraversa una finestra di *Mylar* di 6 µm prima di entrare nella camera in cui si trova il gas

TRIM **non** prende in considerazione il trasporto degli elettroni primari

Profilo medio

Profilo medio

Canali di elettronica **equalizzati** tramite pulser Fattore di calibrazione uguale per <u>tutti</u> i pads \Rightarrow Fattore uguale per <u>tutti</u> i punti del profilo

Profilo medio

Canali di elettronica equalizzati tramite pulser

Fattore di calibrazione uguale per tutti i pads

 \Rightarrow Fattore uguale per <u>tutti</u> i punti del profilo

Ho informazioni sull'**intero** profilo di perdita di energia \Rightarrow Sfrutto l'**intera** forma per eseguire la calibrazione

Profilo medio

Canali di elettronica equalizzati tramite pulser

Fattore di calibrazione uguale per tutti i pads

 \Rightarrow Fattore uguale per <u>tutti</u> i punti del profilo

Ho informazioni sull'**intero** profilo di perdita di energia ⇒ Sfrutto l'**intera** forma per eseguire la calibrazione

Profilo ottenuto da TRIM

Singolo profilo

Profilo medio

Canali di elettronica equalizzati tramite pulser

Fattore di calibrazione uguale per tutti i pads

 \Rightarrow Fattore uguale per <u>tutti</u> i punti del profilo

Ho informazioni sull'**intero** profilo di perdita di energia ⇒ Sfrutto l'**intera** forma per eseguire la calibrazione

Profilo ottenuto da TRIM

 $\varepsilon = \sum_{i} [C_D^{(ev)} \cdot S_{ATS}^{(ev)}(x_i) - S_{TRIM}(x_i)]^2 = \min$

Profilo medio

Canali di elettronica equalizzati tramite pulser

Fattore di calibrazione uguale per tutti i pads

 \Rightarrow Fattore uguale per <u>tutti</u> i punti del profilo

Ho informazioni sull'**intero** profilo di perdita di energia \Rightarrow Sfrutto l'**intera** forma per eseguire la calibrazione

Profilo ottenuto da TRIM

 $\varepsilon = \sum_{i} [C_D^{(ev)} \cdot S_{ATS}^{(ev)}(x_i) - S_{TRIM}(x_i)]^2 = \min \Longrightarrow C_D$: centroide della distribuzione dei $C_D^{(ev)}$

Controlli effettuati:

scarto della carica e del range rispetto al valor medio in funzione del numero di evento

Controlli effettuati:

scarto della carica e del *range* rispetto al valor medio in funzione del numero di evento Esempio (negativo): ¹¹B a E = 33 MeV, CF₄ a P = 150.7 mbar, $\Delta P = 6.3$ mbar (~ 4.2%)

Controlli effettuati:

scarto della carica e del *range* rispetto al valor medio in funzione del numero di evento Esempio (negativo): ¹¹B a E = 33 MeV, CF₄ a P = 150.7 mbar, $\Delta P = 6.3$ mbar (~ 4.2%)

PRESENTAZIONE DEI RISULTATI OTTENUTI

⁶Li @ E = 9 MeV, CF₄ @ P = 69.6 mbar, $\Delta P = 0$ mbar, 44k evs

⁶Li @ E = 9 MeV, CF₄ @ P = 69.6 mbar, $\Delta P = 0$ mbar, 44k evs

Confronto tra i profili

²⁷Al @ E = 75 MeV, CF₄ @ P = 101 mbar, $\Delta P = 0$ mbar, 115k evs

²⁷Al @ E = 75 MeV, CF₄ @ P = 101 mbar, $\Delta P = 0$ mbar, 115k evs

Confronto tra i profili

Dati acquisiti durante il test

CF_4					
Ione	E (MeV)	P (mbar)	M_R^2		
⁶ Li	9	69,6	0,23		
¹² C	36	140	3,13		
^{14}N	42	144	0,78		
¹⁶ O	45	107,4	1,23		
²⁷ Al	75	101	22,37		

Dati acquisiti durante il test

CF ₄					
Ione	E (MeV)	P (mbar)	M_R^2		
⁶ Li	9	69,6	0,23		
¹² C	36	140	3,13		
^{14}N	42	144	0,78		
¹⁶ O	45	107.4	1.23		
²⁷ Al	75	101	22,37		

In tabella non sono stati riportati:

I risultati per le coppie ione/CF₄ per cui sono state riscontrate significative instabilità nel sistema

Il risultato per lo ione ⁵⁰Ti: l'analisi è ancora in corso. Situazione analoga al ²⁷Al?

Dati acquisiti durante il test

CF ₄					
Ione	E (MeV)	P (mbar)	M_R^2		
⁶ Li	9	69,6	0,23		
¹² C	36	140	3,13		
^{14}N	42	144	0,78		
¹⁶ O	45	107.4	1.23		
²⁷ Al	75	101	22,37		

In tabella non sono stati riportati:

I risultati per le coppie ione/CF₄ per cui sono state riscontrate significative instabilità nel sistema

Il risultato per lo ione ⁵⁰Ti: l'analisi è ancora in corso. Situazione analoga al ²⁷Al?

Altri dati a disposizione

Profili di perdita di energia in P10 (Ar, 90%, CH₄, 10%) e in iC₄H₁₀

Analisi in corso

Riassumendo

- Tematiche affrontate dalla Fisica Nucleare moderna
 - ⇒ Bersaglio attivo: strumento *ottimale* per lo studio dei nuclei esotici

Riassumendo

- Tematiche affrontate dalla Fisica Nucleare moderna
 Bersaglio attivo: strumento *ottimale* per lo studio dei nuclei esotici
- Test ai Laboratori Nazionali del Sud Conoscenza accurata dei profili **indispensabile** per esperimenti con un bersaglio attivo

- Tematiche affrontate dalla Fisica Nucleare moderna \implies Bersaglio attivo: strumento *ottimale* per lo studio dei nuclei esotici
- Test ai Laboratori Nazionali del Sud Conoscenza accurata dei profili **indispensabile** per esperimenti con un bersaglio attivo
- Analisi Dati:
 - Selezione degli eventi basata su caratteristiche intrinseche della traccia
 - Simulazione del profilo di perdita di energia usando TRIM
 - Calibrazione in energia sfruttando la conoscenza della forma del profilo

- Test ai Laboratori Nazionali del Sud Conoscenza accurata dei profili **indispensabile** per esperimenti con un bersaglio attivo
- Analisi Dati:
 - Selezione degli eventi basata su caratteristiche intrinseche della traccia
 - Simulazione del profilo di perdita di energia usando TRIM
 - Calibrazione in energia sfruttando la conoscenza della forma del profilo
- Presentazione di due situazioni "opposte": ⁶Li e ²⁷Al

• Esperimento vs. Simulazione: perché in alcuni casi c'è accordo e in altri no? • Esperimento vs. Simulazione: perché in alcuni casi c'è accordo e in altri no?

 \implies ²⁷Al è un osservato speciale: discrepanze molto evidenti tra esperimento e modello

- Esperimento vs. Simulazione: perché in alcuni casi c'è accordo e in altri no?
 - \implies ²⁷Al è un osservato speciale: discrepanze molto evidenti tra esperimento e modello
- Analisi di ⁵⁰Ti

- Esperimento vs. Simulazione: perché in alcuni casi c'è accordo e in altri no?
 - \implies ²⁷Al è un osservato speciale: discrepanze molto evidenti tra esperimento e modello
- Analisi di ⁵⁰Ti
- Simulazione con GEANT4 dell'apparato

 \implies Inclusione di effetti che TRIM non considera: diffusione termica, trasporto degli elettroni primari...

- Esperimento vs. Simulazione: perché in alcuni casi c'è accordo e in altri no?
 - \implies ²⁷Al è un osservato speciale: discrepanze molto evidenti tra esperimento e modello
- Analisi di ⁵⁰Ti
- Simulazione con GEANT4 dell'apparato

 \implies Inclusione di effetti che TRIM non considera: diffusione termica, trasporto degli elettroni primari...

• Analisi di altre combinazioni gas/ione

GRAZIE PER L'ATTENZIONE

BACKUP

⁶⁸Ni(α, α') ⁶⁸Ni^{*}, E = 50AMeV [*M. Vandebrouck, et al., PRL 113, 032504 (2014)*]

Studio della **risonanza isoscalare gigante** (ISGMR, *breathing mode*), dell'isotopo *neutron rich* ⁶⁸Ni

ISGMR

⁶⁸Ni(α, α') ⁶⁸Ni^{*}, E = 50AMeV [*M. Vandebrouck, et al., PRL 113, 032504 (2014)*]

Studio della **risonanza isoscalare gigante** (ISGMR, *breathing mode*), dell'isotopo *neutron rich* ⁶⁸Ni

ISGMR

Misurare l'energia della ISGMR permette di estrarre informazioni sui modi di compressione/espansione della materia nucleare

⁶⁸Ni(α, α') ⁶⁸Ni^{*}, E = 50AMeV [M. Vandebrouck, et al., PRL 113, 032504 (2014)]

Studio della **risonanza isoscalare gigante** (ISGMR, *breathing mode*), dell'isotopo *neutron rich* ⁶⁸Ni

Misurare l'energia della ISGMR permette di estrarre informazioni sui modi di

compressione/espansione della materia nucleare

Posso aggiungere **vincoli** sperimentali sul parametro che, nell'equazione di stato, descrive l'incomprimibilità della materia nucleare

Applicazioni in altri ambiti, ad esempio lo studio della struttura delle stelle di neutroni

Chip integrato specifico per le TPCs

- 64 canali per AGET
- Memoria analogica (SCA)

512 celle (\leftrightarrow campioni)

frequenza di scrittura variabile fino a 100 MHz

Evento \rightarrow *stop* scrittura SCA \rightarrow **digitalizzazione**

• Segnali formati con costante di tempo selezionabile

Altri componenti

- AsAd: gestisce (fino a) 4 AGET e i convertitori analogico digitali (ADC)
- **CoBo**: gestisce (fino a) 4 AsAd, legge e trasferisce i dati
- **MuTanT**: *trigger* e sincronizzazione dei canali

Trattazione dei segnali digitalizzati

1 AGET: 64 segnali fisici (ampiezza 🗠 carica raccolta 🗠 energia rilasciata) + 4 FPN

FPN: Fixed Pattern Noise —> misura dei disturbi indotti fra i canali

Sottrazione della baseline dai segnali fisici [J. Giovinazzo, et al., NIM A 840 (2016) 15-27]

- AGET $\longrightarrow \hat{f}[n]$: media campione per campione dei quattro segnali FPN
- Per ogni s[n] dell'AGET: $s_{corr}[n] = s[n] \hat{f}[n]$
- Ampiezza del segnale $A = \max\{s_{corr}[n]\}$

Analisi Dati: equalizzazione dei canali

1 pad \leftrightarrow 1 canale di ciascun AGET. In generale, i guadagni **di ciascun canale** sono differenti f_{xy} riferito ad un pad arbitrario (00): $\hat{A} = f_{xy} \cdot A \longrightarrow$ pulser esterno, comune a tutti i pad

La non uniformità **locale** dello spessore delle *micromegas* è stata testata tramite una sorgente monoenergetica di raggi X

[T. Roger, et al., NIM A 895, (2018) 126 -134]

Sottrazione della baseline:

in questa situazione, la misura dei disturbi mediante i canali FPN **non** è corretta [*J. Giovinazzo, et al., NIM A 840 (2016) 15-27*]

Scrittura *asincrona* della memoria analogica per segnali di pulser e FPN

Fit lineare dei campioni

 $s_{corr}[n] = s_p[n] - L[n]$

\rightarrow Variazioni misurate < 1%

A parità di ampiezza del segnale in ingresso, assumo che le variazioni dell'ampiezza misurata nei segnali in uscita siano dovute soltanto alla catena elettronica

Analisi Dati: equalizzazione dei canali

Pulser di diverse ampiezze

$$F = G_{xy} \cdot C + Q_{xy} \Rightarrow f_{xy} = G_{xy}/G_{00}$$

Sottratta la *baseline*, $Q_{xy} = 0$ per ogni x, y

Distribuzione degli f_{xy}

