
EOSC-hub receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 777536.

eosc-hub.eu
@EOSC_eu

ANSIBLE - Essentials

Doina Cristina Duma, INFN-CNAF
Marica Antonacci, INFN-Bari
"Instanziazione e utlizo batch system on demand su infrastrutture cloud. L’esempio pilota
dell’esperimento AMS»
25 – 28 Nov. 2019, Perugia

• What is, how it works, architecture
• Key components

- Ad-hoc commands
• Roles, their structure
• Ansible-Galaxy & Galaxy, Roles use and re-use
• Playbooks & roles
• Advanced usage: debug, optimization

2

Outline

• «Ansible»
Ø 1966 – Ursula K. Le Guin, «Rocannon’s World»

Ø «answerable»: device that allow its users to receive answers to their messages in a
reasonable amount of time, even over interstellar distances

Ø 1977,1985 – Orson Scott Card, «Ender’s Game»
Ø «Philotic Parallax Instantaneous Communicator»: machine capable of

communicating across infinite distances with no time delay
Ø 2012 - Michael DeHaan , RH Emerging Technlogies: «work on basically whatever

they thought people needed»
Ø Cobbler & Func
Ø AnsibleWorks, Inc. => Ansible, Inc. => RedHat (2015)
Ø «a simple deployment, model-driven configuration management, and command

execution framework»

3

Bit…s of History

https://enderverse.fandom.com/wiki/Ansible
http://www.coloandcloud.com/editorial/an-interview-with-ansible-author-michael-dehaan/
http://cobbler.github.com/
http://fedorahosted.org/func

«Ansible is an automation and configuration management
technology used to provision, deploy, and manage compute
infrastructure across cloud, virtual, and physical environments»

Ø Automation language that can describe an IT application
infrastructure, in Ansible Playbooks => YAML

Ø Automation Engine that runs Ansible Playbooks

4

What is?

https://yaml.org/

- Human friendly (readble) data-serialization standard for all programming languages
- Can be used with nearly any application that needs to store or transmit data
- Flexible = bits and pieces from other languages:

- Scalars, lists, associative arays <- Perl
- Document separator, «—» <- MIME
- Whitespace wrapping <- HTML
- Escape sequences <- C
- uses both Python-style indentation to indicate nesting
- Superset of JSON - uses [] for lists and {} for maps

5

(YAML = YAML Ain't Markup Language)

• Works with existing toolkits
Ø Homogenize existing env. By leveraging

current toolsets and update
mechanisms

• «Batteries Included»
Ø Comes bundled with > 450 modules

• Community powered
Ø the most popular open source automation

tool on GitHub
▪ Downloads ~250k/month
▪ People – 3500 people contributing

modules, 1200 users on IRC

• Simple
Ø Human readable automation
Ø No special coding skills needed
Ø Tasks executed in order
Ø Get productive quickly

• Powerful
Ø Application deployment
Ø Configuration management
Ø Workflow orchestration
Ø Orchestrate the application lifecycle

• Cross-platform
Ø Agentless support for all major OS,

physical, virtual, cloud and network

6

Ansible is …

- Cloud
- Containers
- Databases
- Files
- Messaging

- Monitoring
- Network
- Notifications
- Packaging
- Source Control

- System
- Testing
- Utilities
- Web

Infrastructure

7

Ansible – Complete Package

8

Use cases

• Control Node
Ø Any machine with Ansible installed

• Managed Nodes = hosts
Ø Servers one manages with Ansible
Ø No Ansible installed

• Inventory = hostfile
Ø List of managed hosts
Ø Groups – hosts with common features (web

server, rack)
• Modules

Ø units of code Ansible executes
• Tasks

Ø units of action in Ansible
• Playbook

Ø Ordered lists of tasks, and variables
Ø Written in YAML

9

Ansible concepts

• Playbook is a YAML file which consists in
a list of Plays.
Ø A Play in a playbook is a list of Tasks.

Ø A Task in a play contains Modules
and its arguments.
Ø Modules are the ones that do

the actual work.

10

Ansible Architecture

11

Modules & Plugins

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html
https://docs.ansible.com/ansible/latest/plugins/plugins.html

• Version:
Ø latest

• Requirements:
Ø Control Node

▪ Python 2 (v. 2.7) or Python 3 (v. 3.5 and higher)
▪ Red Hat, Debian, CentOS, macOS, any of the BSDs, etc

v No Windows
▪ Nearness/closeness

- Managed Nodes
▪ Python 2 (v. 2.7) or Python 3 (v. 3.5 and higher)
▪ a way to communicate => ssh

12

Installation

13

Installation (2)

• On Mac

14

Version, config files, demo ….

• On your hosts

15

Version, config files, demo ….

• $ANSIBLE_CONFIG
• {$PWD}/ansible.cfg
• ~/.ansible.cfg
• /etc/ansible/ansible.cfg

16

Config files

• $ANSIBLE_CONFIG
• {$PWD}/ansible.cfg
• ~/.ansible.cfg
• /etc/ansible/ansible.cfg

17

Config files

• $ANSIBLE_CONFIG
• {$PWD}/ansible.cfg
• ~/.ansible.cfg
• /etc/ansible/ansible.cfg

18

Config files

• $ANSIBLE_CONFIG
• {$PWD}/ansible.cfg
• ~/.ansible.cfg
• /etc/ansible/ansible.cfg

$ ansible-config list

19

Config files

• ansible - Define and run a single task ‘playbook’ against a set of hosts
• ansible-config - View ansible configuration
• ansible-console - REPL console for executing Ansible tasks
• ansible-doc - Plugin documentation tool
• ansible-galaxy - Perform various Role and Collection related operations
• ansible-inventory - Display or dump the configured inventory as Ansible sees it
• ansible-playbook-Runs Ansible playbooks, executing the defined tasks on the

targeted hosts.
• ansible-pull - pulls playbooks from a VCS repo and executes them for the local

host
• ansible-vault - encryption/decryption utility for Ansible data files

20

CLI

https://docs.ansible.com/ansible/latest/cli/ansible.html
https://docs.ansible.com/ansible/latest/cli/ansible-config.html
https://docs.ansible.com/ansible/latest/cli/ansible-console.html
https://docs.ansible.com/ansible/latest/cli/ansible-doc.html
https://docs.ansible.com/ansible/latest/cli/ansible-galaxy.html
https://docs.ansible.com/ansible/latest/cli/ansible-inventory.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/cli/ansible-pull.html
https://docs.ansible.com/ansible/latest/cli/ansible-vault.html

• Formats:
Ø INI
Ø YAML

• Hosts
Ø Remote nodes managed by Ansible
Ø Can have individual variables (host name, service port

number, etc, see ex…)
Ø Ranges:

▪ www[01:50].example.com
▪ db-[a:f].example.com

Ø Vars:
[group1]
host1 http_port=80 maxRequestsPerChild=808
host2 http_port=303 maxRequestsPerChild=909

21

Inventory: formats, hosts, groups

• Groups
Ø Used to clasify hosts, hosts in

multiple groups
▪ what hosts you are controlling

at what times and for what
purpose.

Ø Default groups:
▪ «all», «ungrouped»

• Vars:
- Host vars
- Group vars

▪ Assigning a variable to many machines (see hosts_2.yaml)
▪ Ansible flattens vars at level of host

Ø internal rules for merging => order/precedence:
Ø all group
Ø parent group
Ø child group
Ø Host

Ø When multiple inventory => order of the inventory source

22

Inventory: formats, hosts, groups, vars

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

• Modules = units of code executed by Ansible
= «Ansible toolbox»

- Written in Python
- Extensive library:

▪ Web module index
▪ # ansible-doc –l

- (run)-commands => Ad-hoc commands
▪ command

• Exec commands on targets
▪ shell

• Exec shell commands on targets
▪ script

• Runs a local script on a remote node after transferring it
▪ raw

• Exec a command without going throughthe Ansible module subsystem

23

Modules & Run Commands

https://docs.ansible.com/ansible/latest/modules/modules_by_category.html

24

Ad-hoc Commands & Discovered Facts

25

Ad-hoc Commands & Discovered Facts (2)

26

Ad-hoc Commands & Discovered Facts (3)

• Task
- Application of a single module on one or more hosts
- Each task ends in a well-defined state

• Play
- A set of ordered tasks, associated with a group of

hosts

• Playbook
- Associate the hosts with the desired state of the

infrastructure, defining the set of tasks to be
performed

- They therefore allow orchestration and deployment
- Collection of plays

27

Playbooks, plays, tasks

• Including (A. 2.0) and Importing (A. 2.4)
- Dynamic vs static

• Roles
- decompose complex jobs into smaller pieces

▪ organizing multiple, related Tasks and encapsulating data needed to accomplish those Tasks
• Variables, handlers, modules, plugins

- special kind of Playbooks, fully self-contained, with tasks, variables, configuration
templates, other supporting files
▪ cannot be executed

- provide a skeleton for an independent and reusable collection of variables, tasks,
templates, files, and modules which can be automatically loaded into the playbook.
▪ Playbooks are a collection of roles
▪ Every role has specific functionality

28

Creating Reusable Playbooks - Roles

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_includes.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

• Location:
Ø Search path

▪ A roles/ directory, relative to the playbook file.
▪ By default, in /etc/ansible/roles

Ø Defined in the configuration, can be customized

Ø Best-practice => define it (ansible.cfg) in a «project» related directory

29

Roles - Location

• Expect files to be in certain directory names
Ø At least one of the listed directories
Ø When exists – mut contain «main.yml»

• Content:
Ø tasks - main list of tasks to be executed by the role.
Ø handlers - handlers, which may be used by this role or even anywhere

outside this role.
Ø defaults - default variables for the role (see Using Variables for more

information).
Ø vars - other variables for the role
Ø files - contains files which can be deployed via this role
Ø templates - templates which can be deployed
Ø meta - defines some meta data for this role.

30

Roles - Directory Structure

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

• Classic/original - via the roles: option for a given play

• Order to add in the play/playbook:
- roles/x/tasks/main.yml
- roles/x/handlers/main.yml
- roles/x/vars/main.yml
- roles/x/meta/main.yml
- Any copy, script, template can reference files in roles/x/{files,templates,tasks}/

• Order of execution of the playbook
Ø Each role listed in roles

Ø Any role dependencies defined in the meta/main.yml
Ø Any tasks defined in the play.
Ø Any handlers triggered so far will be run.

31

Roles – how to use

32

From monolithic playbook to roles

33

Extracting Tasks

34

Extracting handler

• two types of variables that can be defined in a role:
- role variables, loaded from roles/<role_name>/vars/main.yaml

▪ used for example for system-specific constants that don't change much
- role defaults, which are loaded from roles/<role_name>/defaults/main.yaml

▪ place holders for actual data, a reference of what variables a developer may be
interested in defining with site-specific values

• Main difference – precedence order
- Defaults - are the lowest order variables

35

Variables

36

Variables in roles - examples

37

Moving config files

38

New playbook that uses the new role

Check

Reference: https://docs.ansible.com/ansible-lint/rules/default_rules.html

Check

PLAY

https://docs.ansible.com/ansible-lint/rules/default_rules.html

39

New playbook that uses the new role

PLAY

40

Ansible Galaxy – Reusing Roles

41

ansible-galaxy CLI tool

42

Search Roles

43

Get Info

44

Get Info (2)

45

One more!!

ansible-galaxy install role_name(s)[,version]

46

Download and Install – from Galaxy

Where:

Do:

Check:

47

Download and Install – from Github

ansible-galaxy install scm+role_repo_url[,version]

• ansible-galaxy tool can also be used to generate scaffolding, an
initial set of files and directories involved in a role:

[ansible_project]# ansible-galaxy init apache_new
- apache_new was created successfully

[ansible_project]# ansible-galaxy list
- ansible-elasticsearch, 7.4.1
- apache_new, (unknown version)

[ansible_project]# ansible-galaxy init --init-path=INIT_PATH apache_new

48

Creating roles with ansible-galaxy

• CLI
- GitHub repository for new role
- login to Ansible Galaxy
- ansible import

49

Importing roles – using CLI & WebUI

ansible-galaxy login –h
Usage: ansible-galaxy login [options]

Options:
--github-token=TOKEN Identify with github token rather than

username and
password.

-h, --help show this help message and exit
-c, --ignore-certs Ignore SSL certificate validation

errors.
-s API_SERVER, --server=API_SERVER

The API server destination
-v, --verbose verbose mode (-vvv for more, -vvvv to

enable
connection debugging)

--version show program's version number and exit

50

ansible login

ansible-galaxy login –h
Usage: ansible-galaxy login [options]

Options:
--github-token=TOKEN Identify with github token rather than username and

password.
-h, --help show this help message and exit
-c, --ignore-certs Ignore SSL certificate validation errors.
-s API_SERVER, --server=API_SERVER

The API server destination
-v, --verbose verbose mode (-vvv for more, -vvvv to enable

connection debugging)
--version show program's version number and exit

Github token can be generated here: https://github.com/settings/tokens

https://github.com/settings/tokens

51

ansible-galaxy import

ansible-galaxy import -h
Usage: ansible-galaxy import [options] github_user github_repo

Options:
--branch=REFERENCE The name of a branch to import. Defaults to the epository's default

branch (usually master)
-h, --help show this help message and exit
-c, --ignore-certs Ignore SSL certificate validation errors.
--no-wait Don't wait for import results.
--role-name=ROLE_NAME

The name the role should have, if different than the
repo name

-s API_SERVER, --server=API_SERVER
The API server destination

--status Check the status of the most recent import request for
given github_user/github_repo.

-v, --verbose verbose mode (-vvv for more, -vvvv to enable
connection debugging)

--version show program's version number and exit

52

Import using Ansible Galaxy Web GUI

• Debbuging
• Optmization
• Vault

53

Ansible – advanced usage

• Verbose flag: -vvv or –verbose
- prints all the values that were returned by each module after it runs
ansible-playbook --verbose playbook.yml

• debug module - prints statements during execution and can be useful for debugging
variables or expressions without necessarily halting the playbook. Useful for debugging
together with the 'when:' directive.

- debug: var=myvariable
- debug: msg="The value of myvariable is {{ var }}"
- debug:

msg: "System {{ inventory_hostname }} has gateway {{ ansible_default_ipv4.gateway }}"
when: ansible_default_ipv4.gateway is defined

54

Verbose & debug

• Assert module - module asserts that given expressions are true
- assert: { that: "ansible_os_family != 'RedHat’» }

• Pause module - pauses playbook execution for a set amount of time, or
until a prompt is acknowledged
- default behavior is to pause with a prompt

Pause for 5 minutes to build app cache.
- pause:

minutes: 5

55

assert & pause

• «--syntax-check» perform a syntax check on the playbook, but do not execute it

• «--list-tasks» list all tasks that would be executed

56

syntax check & list tasks

• SSH multiplexing & ControlPersist
- When Ansible runs a playbook, it will make many SSH connections, in order to do things

such as copy over files and run commands.
- Each time Ansible makes a new SSH connection to a host, it has to pay the negotiation

penalty.
- OpenSSH supports an optimization called SSH multiplexing, which is also referred to as

ControlPersist:
Ø a master connection is opened for each host and a control socket is used to communicate with

the remote host instead of making a new TCP connection

Ø In Ansible:

ControlMaster default=auto
ControlPath default=$HOME/.ansible/cp/ansible-ss-%h-%p-%r
ControlPersist 60s

57

Optimization (1)

• Pipelining
- When Ansible executes a task

▪ It generates a Python script based on the module being invoked
▪ Then it copies the Python script to the host
▪ Finally, it executes the Python script

- Enabling pipelining reduces the number of SSH operations required to
execute a module on the remote server
▪ by executing many ansible modules without actual file transfer.
▪ this can result in a very significant performance improvement when enabled
▪ however when using “sudo:” operations you must first disable ‘requiretty’ in

/etc/sudoers on all managed hosts.

58

Optimization (2)

• Facts caching
- When a fact cache is enabled and there is valid data for a host, Ansible will

use that rather than running an implicit setup job on a remote host.
- Plugins => # ansible-doc -t cache -l

59

Optimization (3)

• jsonfile JSON formatted files.
• memcached Use memcached DB for cache
• memory RAM backed, non persistent
• mongodb Use MongoDB for caching

• pickle Pickle formatted files.
• redis Use Redis DB for cache
• yaml YAML formatted files.

- [defaults]
- gathering = smart fact
- _caching_timeout = 86400

fact_caching =

• Connect to your VM & become root
ssh -i ~/ssh_keys/id_rsa_pg -l centos 193.204.89.119

• Get project from baltig
git clone https://baltig.infn.it/aiftim/corso_dodas_2019.git

• Update files to meet your environment – ansible.cfg, hosts…
• Install elasticsearch role

ansible-galaxy install elastic.elasticsearch,7.4.1

• Check ….
• Run

ansible-playbook -i hosts es.yaml

60

Example – using elastic.elasticsearch module

https://baltig.infn.it/aiftim/corso_dodas_2019.git

61

eosc-hub.eu @EOSC_eu

Thank you for your
attention!

Questions?

Contact

This material by Parties of the EOSC-hub Consortium is licensed under a Creative Commons Attribution 4.0 International License.

